

LNPTM THERMOCOMPTM COMPOUND 8K008V

DESCRIPTION

LNP THERMOCOMP 8K008V is a Liquid Crystalline Polymer (LCP) based compound for Laser Direct Structuring application. Added features of this material are: High heat resistance for SMT processing. Smooth surface, low warpage and stable dielectric performance.

GENERAL INFORMATION	
Features	Chemical Resistance, Good Processability, High Flow, Low Warpage, Thin Wall, Laser Direct Structuring, Dimensional stability, High temperature resistance, No PFAS intentionally added
Fillers	Mineral
Polymer Types	Liquid Crystal Polymer (LCP)
Processing Techniques	Injection Molding

INDUSTRY	SUB INDUSTRY
Automotive	Automotive Interiors
Electrical and Electronics	Mobile Phone - Computer - Tablets
Industrial	Electrical

TYPICAL PROPERTY VALUES

Revision 20241021

PROPERTIES	TYPICAL VALUES	UNITS	TEST METHODS
MECHANICAL (1)			
Tensile Stress, brk, Type I, 5 mm/min	105	MPa	ASTM D638
Tensile Strain, brk, Type I, 5 mm/min	2.5	%	ASTM D638
Tensile Modulus, 5 mm/min	9800	MPa	ASTM D638
Flexural Strength, 1.3 mm/min, 50 mm span	135	MPa	ASTM D790
Flexural Modulus, 1.3 mm/min, 50 mm span	9500	MPa	ASTM D790
Tensile Stress, break, 5 mm/min	100	MPa	ISO 527
Tensile Strain, break, 5 mm/min	2.5	%	ISO 527
Tensile Modulus, 1 mm/min	9500	MPa	ISO 527
Flexural Strength, 2 mm/min	130	MPa	ISO 178
Flexural Modulus, 2 mm/min	9500	MPa	ISO 178
IMPACT (1)			
Izod Impact, notched, 23°C	45	J/m	ASTM D256
Izod Impact, unnotched, 23°C	450	J/m	ASTM D4812
Izod Impact, notched 80*10*4 +23°C	6	kJ/m²	ISO 180/1A
Izod Impact, unnotched 80*10*4 +23°C	20	kJ/m²	ISO 180/1U
Charpy 23°C, V-notch Edgew 80*10*4 sp=62mm	5	kJ/m²	ISO 179/1eA
Charpy 23°C, Unnotch Edgew 80*10*4 sp=62mm	21	kJ/m²	ISO 179/1eU
THERMAL (1)			
HDT, 0.45 MPa, 3.2 mm, unannealed	260	°C	ASTM D648
HDT, 1.82 MPa, 3.2mm, unannealed	225	°C	ASTM D648
HDT/Be, 0.45MPa Edgew 120*10*4 sp=100mm	260	°C	ISO 75/Be

PROPERTIES	TYPICAL VALUES	UNITS	TEST METHODS
HDT/Ae, 1.8 MPa Edgew 120*10*4 sp=100mm	225	°C	ISO 75/Ae
CTE, 23°C to 150°C, flow	1.1E-05	1/°C	ASTM E831
CTE, 23°C to 150°C, xflow	4.5E-05	1/°C	ASTM E831
CTE, 23°C to 150°C, flow	1.2E-05	1/°C	ISO 11359-2
CTE, 23°C to 150°C, xflow	5.0E-05	1/°C	ISO 11359-2
Vicat Softening Temp, Rate A/50	255	°C	ASTM D1525
Vicat Softening Temp, Rate A/120	255	°C	ASTM D1525
Vicat Softening Temp, Rate B/50	190	°C	ASTM D1525
Vicat Softening Temp, Rate B/120	190	°C	ASTM D1525
Vicat Softening Temp, Rate A/50	250	°C	ISO 306
Vicat Softening Temp, Rate A/120	250	°C	ISO 306
Vicat Softening Temp, Rate B/50	180	°C	ISO 306
Vicat Softening Temp, Rate B/120	180	°C	ISO 306
PHYSICAL (1)			
Density	1.8	g/cm³	ASTM D792
Water Absorption, (23°C/24hrs)	0.01	%	ISO 62-1
Mold Shrinkage, flow (2)	0.21	%	SABIC method
Mold Shrinkage, xflow (2)	0.3	%	SABIC method
ELECTRICAL (1)			
Dielectric Constant, 1.1 GHz	4	_	SABIC method
Dielectric Constant, 1.9 GHz	4.01	-	SABIC method
Dielectric Constant, 5 GHz	3.98	-	SABIC method
Dielectric Constant, 10 GHz	3.96	-	SABIC method
Dissipation Factor, 1.1 GHz	0.005	-	SABIC method
Dissipation Factor, 1.9 GHz	0.004	-	SABIC method
Dissipation Factor, 5 GHz	0.003	-	SABIC method
Dissipation Factor, 10 GHz	0.003	-	SABIC method
FLAME CHARACTERISTICS (3)			
UL Yellow Card Link	E207780-104399815	_	
UL Recognized, 94V-0 Flame Class Rating	3.0 – 3.3	mm	UL 94
INJECTION MOLDING (4)	3.0 - 3.3		01.34
	120 – 150	°C	
Drying Time Drying Time	4 – 6	Hrs	
	330 – 340	°C	
Melt Temperature Nozzle Temperature	325 – 335	°C	
	330 – 340	°C	
Front - Zone 3 Temperature	330 – 340	°C	
Middle - Zone 2 Temperature		°C	
Rear - Zone 1 Temperature	280 – 300	°C	
Mold Temperature Back Pressure	90 – 120		
	0.15 - 0.3	MPa	
Injection Speed	50 – 150	mm/s	
Screw Speed	80 – 100	rpm	

- (1) The information stated on Technical Datasheets should be used as indicative only for material selection purposes and not be utilized as specification or used for part or tool design.
- (2) Measurements made from laboratory test coupon. Actual shrinkage may vary outside of range due to differences in processing conditions, equipment, part geometry and tool design. It is recommended that mold shrinkage studies be performed with surrogate or legacy tooling prior to cutting tools for new molded article.
- (3) UL Ratings shown on the technical datasheet might not cover the full range of thicknesses and colors. For details, please see the UL Yellow Card.
- (4) Injection Molding parameters are only mentioned as general guidelines. These may not apply or may need adjustment in specific situations such as low shot sizes, large part molding, thin wall molding and gas-assist molding.

POST-PROCESSING LASER PARAMETERS

Laser Marking Power: 2-10 W

Laser Marking Frequency: 40-100 KHz Laser Marking Speed: 2-4 m/s

DISCLAIMER

Any sale by SABIC, its subsidiaries and affiliates (each a "seller"), is made exclusively under seller's standard conditions of sale (available upon request) unless agreed otherwise in writing and signed on behalf of the seller. While the information contained herein is given in good faith, SELLER MAKES NO WARRANTY, EXPRESS OR IMPLIED, INCLUDING MERCHANTABILITY AND NONINFRINGEMENT OF INTELLECTUAL PROPERTY, NOR ASSUMES ANY LIABILITY, DIRECT OR INDIRECT, WITH RESPECT TO THE PERFORMANCE, SUITABILITY OR FITNESS FOR INTENDED USE OR PURPOSE OF THESE PRODUCTS IN ANY APPLICATION. Each customer must determine the suitability of seller materials for the customer's particular use through appropriate testing and analysis. No statement by seller concerning a possible use of any product, service or design is intended, or should be construed, to grant any license under any patent or other intellectual property right.