

# LNPTM THERMOCOMPTM COMPOUND LCF62E

LCF-1008 EM REGION EUROPE

### **DESCRIPTION**

LNP THERMOCOMP LCF62E compound is based on Polyetheretherketone (PEEK) resin containing 10% carbon fiber and 30% glass fiber. Added features of this grade include: Easy Molding, Electrically Conductive.

| GENERAL INFORMATION   |                                                                                                                         |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------|
| Features              | Electrically Conductive, Good Processability, Carbon fiber filled, High stiffness/Strength, High temperature resistance |
| Fillers               | Carbon Fiber, Glass Fiber                                                                                               |
| Polymer Types         | Polyetheretherketone (PEEK)                                                                                             |
| Processing Techniques | Injection Molding                                                                                                       |

| INDUSTRY                   | SUB INDUSTRY                                             |
|----------------------------|----------------------------------------------------------|
| Electrical and Electronics | Electronic Components, Mobile Phone - Computer - Tablets |
| Industrial                 | Electrical, Material Handling                            |

## TYPICAL PROPERTY VALUES

PROPERTIES TYPICAL VALUES UNITS **TEST METHODS** MECHANICAL<sup>(1)</sup> Tensile Stress, brk, Type I, 5 mm/min 203 MPa ASTM D638 Tensile Strain, brk, Type I, 5 mm/min 0.8 % ASTM D638 Tensile Modulus, 5 mm/min 62980 MPa ASTM D638 Flexural Stress, brk, 1.3 mm/min, 50 mm span 296 MPa ASTM D790 Flexural Modulus, 1.3 mm/min, 50 mm span 17340 MPa ASTM D790 Tensile Stress, break, 5 mm/min 196 MPa ISO 527 ISO 527 Tensile Strain, break, 5 mm/min 0.7 % Tensile Modulus, 1 mm/min 41090 MPa ISO 527 **Flexural Stress** 391 MPa ISO 178 Flexural Modulus, 2 mm/min 36490 MPa ISO 178 IMPACT (1) Izod Impact, unnotched, 23°C 711 J/m ASTM D4812 Izod Impact, notched, 23°C 80 ASTM D256 J/m Instrumented Dart Impact Total Energy, 23°C ASTM D3763 17 Izod Impact, unnotched 80\*10\*4 +23°C 47 kJ/m² ISO 180/1U Izod Impact, notched 80\*10\*4 +23°C 8 kJ/m² ISO 180/1A THERMAL (1) HDT, 0.45 MPa, 3.2 mm, unannealed °C 290 ASTM D648 HDT, 1.82 MPa, 3.2mm, unannealed 290 °C ASTM D648 HDT/Bf, 0.45 MPa Flatw 80\*10\*4 sp=64mm °C 290 ISO 75/Bf

© 2024 Copyright by SABIC. All rights reserved

# CHEMISTRY THAT MATTERS

Revision 20231109



| PROPERTIES                                   | TYPICAL VALUES | UNITS | TEST METHODS |
|----------------------------------------------|----------------|-------|--------------|
| HDT/Af, 1.8 MPa Flatw 80*10*4 sp=64mm        | 290            | °C    | ISO 75/Af    |
| PHYSICAL <sup>(1)</sup>                      |                |       |              |
| Specific Gravity                             | 1.57           | -     | ASTM D792    |
| Density                                      | 1.57           | g/cm³ | ASTM D792    |
| Moisture Absorption, (23°C/50% RH/24 hrs)    | 0.02           | %     | ASTM D570    |
| Mold Shrinkage, flow, 24 hrs <sup>(2)</sup>  | 0.09 – 2       | %     | ASTM D955    |
| Mold Shrinkage, xflow, 24 hrs <sup>(2)</sup> | 1 – 3          | %     | ASTM D955    |
| Moisture Absorption (23°C / 50% RH)          | 0.02           | %     | ISO 62       |
| INJECTION MOLDING (3)                        |                |       |              |
| Drying Temperature                           | 120 – 150      | °C    |              |
| Drying Time                                  | 4              | Hrs   |              |
| Maximum Moisture Content                     | 0.1            | %     |              |
| Melt Temperature                             | 380 – 390      | °C    |              |
| Front - Zone 3 Temperature                   | 380 – 395      | °C    |              |
| Middle - Zone 2 Temperature                  | 365 – 375      | °C    |              |
| Rear - Zone 1 Temperature                    | 350 – 360      | °C    |              |
| Mold Temperature                             | 140 – 165      | °C    |              |
| Back Pressure                                | 0.3 – 0.7      | MPa   |              |
| Screw Speed                                  | 60 – 100       | rpm   |              |

(1) The information stated on Technical Datasheets should be used as indicative only for material selection purposes and not be utilized as specification or used for part or tool design.

(2) Measurements made from laboratory test coupon. Actual shrinkage may vary outside of range due to differences in processing conditions, equipment, part geometry and tool design. It is recommended that mold shrinkage studies be performed with surrogate or legacy tooling prior to cutting tools for new molded article.

(3) Injection Molding parameters are only mentioned as general guidelines. These may not apply or may need adjustment in specific situations such as low shot sizes, large part molding, thin wall molding and gas-assist molding.

#### DISCLAIMER

Any sale by SABIC, its subsidiaries and affiliates (each a "seller"), is made exclusively under seller's standard conditions of sale (available upon request) unless agreed otherwise in writing and signed on behalf of the seller. While the information contained herein is given in good faith, SELLER MAKES NO WARRANTY, EXPRESS OR IMPLIED, INCLUDING MERCHANTABILITY AND NONINFRINGEMENT OF INTELLECTUAL PROPERTY, NOR ASSUMES ANY LLABILITY, DIRECT OR INDIRECT, WITH RESPECT TO THE PERFORMANCE, SUITABILITY OR FITNESS FOR INTENDED USE OR PURPOSE OF THESE PRODUCTS IN ANY APPLICATION. Each customer must determine the suitability of seller materials for the customer's particular use through appropriate testing and analysis. No statement by seller concerning a possible use of any product, service or design is intended, or should be construed, to grant any license under any patent or other intellectual property right.