

NORYL GTXTM RESIN GTX9400W

REGION AMERICAS

DESCRIPTION

NORYL GTX9400W resin is a non-reinforced alloy of Polyphenylene Ether (PPE) + Polyamide (PA). This injection moldable grade exhibits high heat resistance, high flow, and added mold release. NORYL GTX9400W resin is an excellent candidate for automotive under-the-hood applications such as power distribution boxes, relay boxes, connectors, sensors, and fuse box covers.

GENERAL INFORMATION

Features	Chemical Resistance, Hydrolytic Stability, Low Warpage, Low Shrinkage, Low Moisture Absorption, Low Specific Gravity, Dimensional stability, High stiffness/Strength, High temperature resistance, Impact resistant, No PFAS intentionally added
Fillers	Unreinforced
Polymer Types	Polyphenylene Ether + PA (PPE+Nylon)
Processing Techniques	Injection Molding

INDUSTRY	SUB INDUSTRY
Automotive	Automotive Under the Hood
Electrical and Electronics	Electronic Components
Industrial	Electrical

TYPICAL PROPERTY VALUES

PROPERTIES TYPICAL VALUES UNITS **TEST METHODS** MECHANICAL⁽¹⁾ ASTM D638 Tensile Stress, yld, Type I, 50 mm/min 64 MPa Tensile Stress, brk, Type I, 50 mm/min 62 MPa ASTM D638 11 % ASTM D638 Tensile Strain, yld, Type I, 50 mm/min Tensile Strain, brk, Type I, 50 mm/min 40 % ASTM D638 ASTM D638 Tensile Modulus, 50 mm/min 1950 MPa Flexural Stress, yld, 2.6 mm/min, 100 mm span 100 ASTM D790 MPa Flexural Modulus, 2.6 mm/min, 100 mm span 2350 ASTM D790 MPa Tensile Stress, yield, 50 mm/min 69 MPa 150 527 Tensile Strain, break, 5 mm/min 39 ISO 527 % Flexural Modulus, 2 mm/min 2700 ISO 178 MPa IMPACT (1) Izod Impact, unnotched, 23°C 849 J/m ASTM D4812 Izod Impact, unnotched, -30°C 768 J/m ASTM D4812 Izod Impact, notched, 23°C 256 J/m ASTM D256 Izod Impact, notched, -30°C 112 J/m ASTM D256 ASTM D3763 Instrumented Dart Impact Total Energy, 23°C 43 T ASTM D3763 Instrumented Dart Impact Total Energy, -30°C 15 J Izod Impact, notched 80*10*4 +23°C 21 kJ/m² ISO 180/1A Izod Impact, notched 80*10*4 -20°C 15 kJ/m² ISO 180/1A

© 2024 Copyright by SABIC. All rights reserved

CHEMISTRY THAT MATTERS

Revision 20241015

PROPERTIES	TYPICAL VALUES	UNITS	TEST METHODS
Izod Impact, notched 80*10*4 -40°C	13	kJ / m²	ISO 180/1A
THERMAL ⁽¹⁾			
Vicat Softening Temp, Rate B/50	212	°C	ASTM D1525
HDT, 0.45 MPa, 3.2 mm, unannealed	190	°C	ASTM D648
HDT, 1.82 MPa, 3.2mm, unannealed	83	°C	ASTM D648
CTE, -40°C to 40°C, flow	1.22E-04	1/°C	ASTM E831
CTE, -40°C to 40°C, xflow	1.42E-04	1/°C	ASTM E831
Vicat Softening Temp, Rate B/50	203	°C	ISO 306
HDT/Bf, 0.45 MPa Flatw 80*10*4 sp=64mm	187	°C	ISO 75/Bf
HDT/Af, 1.8 MPa Flatw 80*10*4 sp=64mm	78	°C	ISO 75/Af
PHYSICAL ⁽¹⁾			
Specific Gravity	1.1	-	ASTM D792
Mold Shrinkage, flow, 3.2 mm ⁽²⁾	1.2 – 1.4	%	SABIC method
Mold Shrinkage, xflow, 3.2 mm ⁽²⁾	1.1 – 1.4	%	SABIC method
Melt Flow Rate, 280°C/5.0 kgf	97	g/10 min	ASTM D1238
INJECTION MOLDING ⁽³⁾			
Drying Temperature	95 – 105	°C	
Drying Time	3 - 4	Hrs	
Drying Time (Cumulative)	8	Hrs	
Maximum Moisture Content	0.07	%	
Minimum Moisture Content	0.02	%	
Melt Temperature	270 – 295	°C	
Nozzle Temperature	270 – 295	°C	
Front - Zone 3 Temperature	265 – 295	°C	
Middle - Zone 2 Temperature	260 – 295	°C	
Rear - Zone 1 Temperature	255 – 295	°C	
Mold Temperature	65 – 95	°C	
Back Pressure	0.3 – 1.4	MPa	
Screw Speed	20 - 100	rpm	
Shot to Cylinder Size	30 – 50	%	
Vent Depth	0.013 - 0.038	mm	

(1) The information stated on Technical Datasheets should be used as indicative only for material selection purposes and not be utilized as specification or used for part or tool design.

(2) Measurements made from laboratory test coupon. Actual shrinkage may vary outside of range due to differences in processing conditions, equipment, part geometry and tool design. It is recommended that mold shrinkage studies be performed with surrogate or legacy tooling prior to cutting tools for new molded article.

(3) Injection Molding parameters are only mentioned as general guidelines. These may not apply or may need adjustment in specific situations such as low shot sizes, large part molding, thin wall molding and gas-assist molding.

DISCLAIMER

Any sale by SABIC, its subsidiaries and affiliates (each a "seller"), is made exclusively under seller's standard conditions of sale (available upon request) unless agreed otherwise in writing and signed on behalf of the seller. While the information contained herein is given in good faith, SELLER MAKES NO WARRANTY, EXPRESS OR IMPLIED, INCLUDING MERCHANTABILITY AND NONINFRINGEMENT OF INTELLECTUAL PROPERTY, NOR ASSUMES ANY LIABILITY, DIRECT OR INDIRECT, WITH RESPECT TO THE PERFORMANCE, SUITABILITY OR FITNESS FOR INTENDED USE OR PURPOSE OF THESE PRODUCTS IN ANY APPLICATION. Each customer must determine the suitability of seller materials for the customer's particular use through appropriate testing and analysis. No statement by seller concerning a possible use of any product, service or design is intended, or should be construed, to grant any license under any patent or other intellectual property right.