LNP[™] ELCRIN [™] 6K002XiQ ## **DESCRIPTION** LNP ELCRIN 6K002XiQ compound is based on Polycarbonate / Polybutylene Terephthalate (PC/PBT) blend, utilizing ELCRIN iQ upcycling technology containing minimum 18% Post-Consumer Recycling (PCR) weight content and minerals. Added features of this grade include: good balance of Impact, Ductility and Excellent Pull-Strength. | GENERAL INFORMATION | | |-----------------------|--------------------------------------| | Features | Post-Consumer Recycled (PCR) content | | Fillers | Mineral | | Polymer Types | Polycarbonate + PBT (PC+PBT) | | Processing Techniques | Injection Molding | | INDUSTRY | SUB INDUSTRY | |----------------------------|--| | Automotive | Automotive Interiors | | Consumer | Sport/Leisure, Personal Accessory, Home Appliances, Commercial Appliance | | Electrical and Electronics | Electrical Devices and Displays | ## **TYPICAL PROPERTY VALUES** Revision 20210716 | PROPERTIES | TYPICAL VALUES | UNITS | TEST METHODS | |--|----------------|-------|--------------| | MECHANICAL (1) | | | | | Tensile Stress, yld, Type I, 5 mm/min | 59 | MPa | ASTM D638 | | Tensile Stress, brk, Type I, 5 mm/min | 60 | MPa | ASTM D638 | | Tensile Strain, yld, Type I, 5 mm/min | 3.9 | % | ASTM D638 | | Tensile Strain, brk, Type I, 5 mm/min | 130 | % | ASTM D638 | | Tensile Modulus, 5 mm/min | 4000 | MPa | ASTM D638 | | Flexural Stress, yld, 1.3 mm/min, 50 mm span | 104 | MPa | ASTM D790 | | Flexural Modulus, 1.3 mm/min, 50 mm span | 3500 | MPa | ASTM D790 | | Tensile Stress, yield, 5 mm/min | 58 | MPa | ISO 527 | | Tensile Stress, break, 5 mm/min | 54 | MPa | ISO 527 | | Tensile Strain, yield, 5 mm/min | 3.8 | % | ISO 527 | | Tensile Strain, break, 5 mm/min | 120 | % | ISO 527 | | Tensile Modulus, 1 mm/min | 3800 | MPa | ISO 527 | | Flexural Stress, yield, 2 mm/min | 96 | MPa | ISO 178 | | Flexural Modulus, 2 mm/min | 3450 | MPa | ISO 178 | | IMPACT (1) | | | | | Izod Impact, notched, 23°C | 250 | J/m | ASTM D256 | | Izod Impact, notched, -30°C | 90 | J/m | ASTM D256 | | Instrumented Dart Impact Total Energy, 23°C | 65 | ĵ. | ASTM D3763 | | Izod Impact, notched 80*10*4 +23°C | 20 | kJ/m² | ISO 180/1A | | Izod Impact, notched 80*10*4 -30°C | 8 | kJ/m² | ISO 180/1A | | Charpy 23°C, V-notch Edgew 80*10*4 sp=62mm | 23 | kJ/m² | ISO 179/1eA | | PROPERTIES | TYPICAL VALUES | UNITS | TEST METHODS | |---------------------------------------|----------------|------------|--------------| | THERMAL (1) | | | | | HDT, 1.82 MPa, 3.2mm, unannealed | 98 | °C | ASTM D648 | | CTE, -40°C to 40°C, flow | 4.6E-05 | 1/°C | ASTM E831 | | CTE, -40°C to 40°C, xflow | 6.3E-05 | 1/°C | ASTM E831 | | CTE, -40°C to 40°C, flow | 4.6E-05 | 1/°C | ISO 11359-2 | | CTE, -40°C to 40°C, xflow | 6.3E-05 | 1/°C | ISO 11359-2 | | PHYSICAL (1) | | | | | Specific Gravity | 1.3 | - | ASTM D792 | | Mold Shrinkage, flow, 3.2 mm (2) | 0.7 – 0.9 | % | SABIC method | | Melt Flow Rate, 250°C/5.0 kgf | 7 | g/10 min | ASTM D1238 | | Density | 1.3 | g/cm³ | ISO 1183 | | Water Absorption, (23°C/saturated) | 0.28 | % | ISO 62-1 | | Moisture Absorption (23°C / 50% RH) | 0.08 | % | ISO 62 | | Melt Volume Rate, MVR at 265°C/5.0 kg | 13 | cm³/10 min | ISO 1133 | | INJECTION MOLDING (3) | | | | | Drying Temperature | 110 | °C | | | Drying Time | 4 – 6 | Hrs | | | Drying Time (Cumulative) | 8 | Hrs | | | Maximum Moisture Content | 0.02 | % | | | Melt Temperature | 255 – 275 | °C | | | Nozzle Temperature | 250 – 265 | °C | | | Front - Zone 3 Temperature | 250 – 270 | °C | | | Middle - Zone 2 Temperature | 245 – 265 | °C | | | Rear - Zone 1 Temperature | 240 – 260 | °C | | | Mold Temperature | 40 – 90 | °C | | | Back Pressure | 0.3 – 0.7 | MPa | | | Screw Speed | 40 - 80 | rpm | | | Shot to Cylinder Size | 50 – 80 | % | | | Vent Depth | 0.013 - 0.02 | mm | | ⁽¹⁾ The information stated on Technical Datasheets should be used as indicative only for material selection purposes and not be utilized as specification or used for part or tool design ## DISCLAIMER Any sale by SABIC, its subsidiaries and affiliates (each a "seller"), is made exclusively under seller's standard conditions of sale (available upon request) unless agreed otherwise in writing and signed on behalf of the seller. While the information contained herein is given in good faith, SELLER MAKES NO WARRANTY, EXPRESS OR IMPLIED, INCLUDING MERCHANTABILITY AND NONINFRINGEMENT OF INTELLECTUAL PROPERTY, NOR ASSUMES ANY LIABILITY, DIRECT OR INDIRECT, WITH RESPECT TO THE PERFORMANCE, SUITABILITY OR FITNESS FOR INTENDED USE OR PURPOSE OF THESE PRODUCTS IN ANY APPLICATION. Each customer must determine the suitability of seller materials for the customer's particular use through appropriate testing and analysis. No statement by seller concerning a possible use of any product, service or design is intended, or should be construed, to grant any license under any patent or other intellectual property right. ⁽²⁾ Measurements made from laboratory test coupon. Actual shrinkage may vary outside of range due to differences in processing conditions, equipment, part geometry and tool design. It is recommended that mold shrinkage studies be performed with surrogate or legacy tooling prior to cutting tools for new molded article. ⁽³⁾ Injection Molding parameters are only mentioned as general guidelines. These may not apply or may need adjustment in specific situations such as low shot sizes, large part molding, thin wall molding and gas-assist molding.