سیابک ےندائی

Revision 20231109

NORYLTM RESIN N850

REGION EUROPE

DESCRIPTION

NORYL N850 resin is a non-reinforced blend of polyphenylene ether (PPE) + polystyrene (PS). This high flow, injection moldable grade contains nonbrominated, non-chlorinated flame retardant and carries a UL94 flame rating of 5VA at 3mm and V0 at 1.5mm along with UL746C Outdoor Suitability rating of F2. NORYL N850 resin exhibits high impact strength, dimensional stability, hydrolytic stability, and very low moisture absorption. This material is an excellent candidate for electrical and business equipment applications.

GENERAL INFORMATION			
Features	Flame Retardant, High Flow, Hydrolytic Stability, Low Warpage, Amorphous, Low Shrinkage, Low Moisture Absorption, Low Specific Gravity, Non Cl/Br flame retardant, Non halogenated flame retardant, Dimensional stability		
Fillers	Unreinforced		
Polymer Types	Polyphenylene Ether + PS (PPE+PS)		
Processing Techniques	Injection Molding		
INDUSTRY	SUB INDUSTRY		
Electrical and Electronics	Electronic Components, Mobile Phone - Computer - Tablets		

Electrical

TYPICAL PROPERTY VALUES

Industrial

PROPERTIES UNITS TYPICAL VALUES TEST METHODS MECHANICAL⁽¹⁾ Tensile Stress, yld, Type I, 50 mm/min 62 MPa ASTM D638 48 Tensile Stress, brk, Type I, 50 mm/min MPa ASTM D638 % ASTM D638 Tensile Strain, yld, Type I, 50 mm/min 3.6 Tensile Strain, brk, Type I, 50 mm/min 18 % ASTM D638 Tensile Modulus, 50 mm/min 2620 MPa ASTM D638 Flexural Stress, yld, 1.3 mm/min, 50 mm span 96 MPa ASTM D790 Flexural Modulus, 1.3 mm/min, 50 mm span 2410 MPa ASTM D790 Tensile Stress, yield, 50 mm/min 66 MPa ISO 527 Tensile Stress, break, 50 mm/min 61 MPa ISO 527 ISO 527 Tensile Strain, yield, 50 mm/min 3.2 % ISO 527 Tensile Strain, break, 50 mm/min 4.5 % Tensile Modulus, 1 mm/min 2950 MPa ISO 527 ISO 178 Flexural Stress, yield, 2 mm/min 107 MPa Flexural Modulus, 2 mm/min 2600 MPa ISO 178 IMPACT (1) Izod Impact, notched, 23°C 213 ASTM D256 J/m Instrumented Dart Impact Total Energy, 23°C 31 T ASTM D3763 Izod Impact, notched 80*10*4 +23°C 10 ISO 180/1A kJ/m² THERMAL (1)

© 2024 Copyright by SABIC. All rights reserved

CHEMISTRY THAT MATTERS

PROPERTIES	TYPICAL VALUES	UNITS	TEST METHODS
Vicat Softening Temp, Rate B/50	101	°C	ASTM D1525
HDT, 0.45 MPa, 3.2 mm, unannealed	93	°C	ASTM D648
HDT, 1.82 MPa, 3.2mm, unannealed	82	°C	ASTM D648
HDT, 0.45 MPa, 6.4 mm, unannealed	98	°C	ASTM D648
HDT, 1.82 MPa, 6.4 mm, unannealed	86	°C	ASTM D648
CTE, -40°C to 40°C, flow	7.74E-05	1/°C	ASTM E831
CTE, -40°C to 40°C, xflow	8.1E-05	1/°C	ASTM E831
Vicat Softening Temp, Rate B/120	108	°C	ISO 306
HDT/Bf, 0.45 MPa Flatw 80*10*4 sp=64mm	95	°C	ISO 75/Bf
HDT/Af, 1.8 MPa Flatw 80*10*4 sp=64mm	82	°C	ISO 75/Af
Relative Temp Index, Elec	50	°C	UL 746B
Relative Temp Index, Mech w/impact	50	°C	UL 746B
Relative Temp Index, Mech w/o impact	50	°C	UL 746B
PHYSICAL ⁽¹⁾			
Specific Gravity	1.13	-	ASTM D792
Mold Shrinkage, flow, 3.2 mm ⁽²⁾	0.5 – 0.7	%	SABIC method
Melt Flow Rate, 220°C/2.16 kgf	14	g/10 min	ASTM D1238
Melt Flow Rate, 260°C/3.8 kgf	18	g/10 min	ASTM D1238
ELECTRICAL ⁽¹⁾			
Hot Wire Ignition {PLC)	2	PLC Code	UL 746A
High Voltage Arc Track Rate {PLC}	4	PLC Code	UL 746A
High Ampere Arc Ign, surface {PLC}	2	PLC Code	UL 746A
Comparative Tracking Index (UL) {PLC}	2	PLC Code	UL 746A
FLAME CHARACTERISTICS	-		
UL Recognized, 94HB Flame Class Rating	.99	mm	UL 94
UL Recognized, 94V-0 Flame Class Rating	1.49	mm	UL 94
UL Recognized, 94-5VA Flame Class Rating	2.99	mm	UL 94
Oxygen Index (LOI)	364	%	ASTM D2863
UV-light, water exposure/immersion	F2	-	UL 746C
INJECTION MOLDING ⁽³⁾	. 2		
Drying Temperature	75 – 80	°C	
Drying Time	3 - 4	Hrs	
Drying Time (Cumulative)	8	Hrs	
Maximum Moisture Content	-0.02	%	
Melt Temperature	250 - 275	°C	
Nozzle Temperature	250 - 275	°C	
Front - Zone 3 Temperature	240 - 275	°C	
	225 - 270	°C	
Middle - Zone 2 Temperature	225 - 270	°C	
Rear - Zone 1 Temperature Mold Temperature	55 - 75	°C	
Back Pressure	0.3 – 0.7	MPa	
	20 - 100		
Screw Speed Shot to Cylinder Size	30 - 70	rpm %	
Vent Depth	0.038 - 0.051	mm	

- (1) The information stated on Technical Datasheets should be used as indicative only for material selection purposes and not be utilized as specification or used for part or tool design.
- (2) Measurements made from laboratory test coupon. Actual shrinkage may vary outside of range due to differences in processing conditions, equipment, part geometry and tool design. It is recommended that mold shrinkage studies be performed with surrogate or legacy tooling prior to cutting tools for new molded article.
- (3) Injection Molding parameters are only mentioned as general guidelines. These may not apply or may need adjustment in specific situations such as low shot sizes, large part molding, thin wall molding and gas-assist molding.

DISCLAIMER

Any sale by SABIC, its subsidiaries and affiliates (each a "seller"), is made exclusively under seller's standard conditions of sale (available upon request) unless agreed otherwise in writing and signed on behalf of the seller. While the information contained herein is given in good faith, SELLER MAKES NO WARRANTY, EXPRESS OR IMPLIED, INCLUDING MERCHANTABILITY AND NONINFRINGEMENT OF INTELLECTUAL PROPERTY, NOR ASSUMES ANY LIABILITY, DIRECT OR INDIRECT, WITH RESPECT TO THE PERFORMANCE, SUITABILITY OR FITNESS FOR INTENDED USE OR PURPOSE OF THESE PRODUCTS IN ANY APPLICATION. Each customer must determine the suitability of seller materials for the customer's particular use through appropriate testing and analysis. No statement by seller concerning a possible use of any product, service or design is intended, or should be construed, to grant any license under any patent or other intellectual property right.