

ULTEMTM RESIN JD7201

DESCRIPTION

ULTEM JD7201 compound is based on Polyetherimide (PEI) resin containing 20% carbon fiber. Added features of this grade include: Electrically Conductive.

GENERAL INFORMATION	
Features	Electrically Conductive, Carbon fiber filled, High stiffness/Strength, High temperature resistance, No PFAS intentionally added
Fillers	Carbon Fiber
Polymer Types	Polyetherimide (PEI)
Processing Techniques	Injection Molding

INDUSTRY	SUB INDUSTRY
Electrical and Electronics	Electrical Devices and Displays, Electrical Components and Infrastructure
Industrial	Material Handling

TYPICAL PROPERTY VALUES

Revision 20231109

PROPERTIES	TYPICAL VALUES	UNITS	TEST METHODS
MECHANICAL ⁽¹⁾			
Tensile Stress, yield	204	MPa	SABIC - Japan Method
Tensile Strain, break	6	%	SABIC - Japan Method
Flexural Stress	255	MPa	ASTM D790
Flexural Modulus	13430	MPa	ASTM D790
IMPACT ⁽¹⁾			
Izod Impact, notched, 23°C	69	J/m	ASTM D256
THERMAL ⁽¹⁾			
HDT, 0.45 MPa, 3.2 mm, unannealed	211	°C	ASTM D648
Relative Temp Index, Elec ⁽²⁾	105	°C	UL 746B
Relative Temp Index, Mech w/impact ⁽²⁾	105	°C	UL 746B
Relative Temp Index, Mech w/o impact $^{(2)}$	105	°C	UL 746B
PHYSICAL ⁽¹⁾			
Specific Gravity	1.34	-	ASTM D792
Water Absorption, (23°C/24hrs)	0.26	%	ASTM D570
Mold Shrinkage, flow, 3.2 mm ⁽³⁾	0.2 – 0.3	%	SABIC method
ELECTRICAL ⁽¹⁾			
Surface Resistivity	1.E+02 – 1.E+04	Ω	ASTM D257
FLAME CHARACTERISTICS (2)			
UL Yellow Card Link	<u>E45587-236989</u>	-	
UL Recognized, 94V-0 Flame Class Rating	≥0.75	mm	UL 94
INJECTION MOLDING ⁽⁴⁾			
Drying Temperature	150	°C	
© 2024 Copyright by SABIC All rights reserved		CHE	MISTRY THAT MATTERS

© 2024 Copyright by SABIC. All rights reserved

CHEMISTRY THAT MATTERS"

PROPERTIES	TYPICAL VALUES	UNITS	TEST METHODS
Drying Time	4 - 6	Hrs	
Maximum Moisture Content	0.02	%	
Melt Temperature	360 - 400	°C	
Rear - Zone 1 Temperature	360 - 380	°C	
Middle - Zone 2 Temperature	370 – 390	°C	
Front - Zone 3 Temperature	380 - 400	°C	
Nozzle Temperature	390 - 400	°C	
Mold Temperature	140 - 180	°C	
Back Pressure	0.3 – 0.7	MPa	
Screw speed (Circumferential speed)	0.2 – 0.3	m/s	

(1) The information stated on Technical Datasheets should be used as indicative only for material selection purposes and not be utilized as specification or used for part or tool design.

(2) UL Ratings shown on the technical datasheet might not cover the full range of thicknesses and colors. For details, please see the UL Yellow Card.

(3) Measurements made from laboratory test coupon. Actual shrinkage may vary outside of range due to differences in processing conditions, equipment, part geometry and tool design. It is recommended that mold shrinkage studies be performed with surrogate or legacy tooling prior to cutting tools for new molded article.

(4) Injection Molding parameters are only mentioned as general guidelines. These may not apply or may need adjustment in specific situations such as low shot sizes, large part molding, thin wall molding and gas-assist molding.

DISCLAIMER

Any sale by SABIC, its subsidiaries and affiliates (each a "seller"), is made exclusively under seller's standard conditions of sale (available upon request) unless agreed otherwise in writing and signed on behalf of the seller. While the information contained herein is given in good faith, SELLER MAKES NO WARRANTY, EXPRESS OR IMPLIED, INCLUDING MERCHANTABILITY AND NONINFRINGEMENT OF INTELLECTUAL PROPERTY, NOR ASSUMES ANY LIABILITY, DIRECT OR INDIRECT, WITH RESPECT TO THE PERFORMANCE, SUITABILITY OR FITNESS FOR INTENDED USE OR PURPOSE OF THESE PRODUCTS IN ANY APPLICATION. Each customer's particular use through appropriate testing and analysis. No statement by seller concerning a possible use of any product, service or design is intended, or should be construed, to grant any license under any patent or other intellectual property right.