

LNPTM KONDUITTM COMPOUND 8TF36E

DESCRIPTION

LNP KONDUIT 8TF36E compound is based on Liquid Crystal Polymer (LCP) resin containing 15% glass fibers and proprietary thermal filler. Added features of this grade include: Thermally Conductive, Electrically Insulative, High flow, Low Moisture Absorption, Low CTE values and suitable for light colors.

GENERAL INFORMATION	
Features	High Flow, Low Moisture Absorption, High temperature resistance, Thermally conductive/Electrically isolative, No PFAS intentionally added
Fillers	Glass Fiber
Polymer Types	Liquid Crystal Polymer (LCP)
Processing Techniques	Injection Molding

INDUSTRY	SUB INDUSTRY
Electrical and Electronics	Electronic Components
Industrial	Material Handling

TYPICAL PROPERTY VALUES

Revision 20241025

PROPERTIES	TYPICAL VALUES	UNITS	TEST METHODS
MECHANICAL (1)			
Tensile Stress, brk, Type I, 5 mm/min	125	MPa	ASTM D638
Tensile Strain, brk, Type I, 5 mm/min	2.3	%	ASTM D638
Tensile Modulus, 5 mm/min	13000	MPa	ASTM D638
Flexural Strength, 1.3 mm/min, 50 mm span	165	MPa	ASTM D790
Flexural Modulus, 1.3 mm/min, 50 mm span	12000	MPa	ASTM D790
Tensile Stress, break, 5 mm/min	127	MPa	ISO 527
Tensile Strain, break, 5 mm/min	2.2	%	ISO 527
Tensile Modulus, 1 mm/min	13030	MPa	ISO 527
Flexural Strength, 2 mm/min	170	MPa	ISO 178
Flexural Modulus, 2 mm/min	13160	MPa	ISO 178
IMPACT (1)			
Izod Impact, notched, 23°C	70	J/m	ASTM D256
Izod Impact, notched, -30°C	68	J/m	ASTM D256
Izod Impact, unnotched, 23°C	400	J/m	ASTM D4812
Izod Impact, unnotched, -30°C	350	J/m	ASTM D4812
Izod Impact, notched 80*10*3 +23°C	7.6	kJ/m²	ISO 180/1A
Izod Impact, notched 80*10*3 -30°C	7.1	kJ/m²	ISO 180/1A
Izod Impact, unnotched 80*10*3 +23°C	21.4	kJ/m²	ISO 180/1U
Izod Impact, unnotched 80*10*3 -30°C	17.4	kJ/m²	ISO 180/1U
Izod Impact, notched 80*10*4 +23°C	7.7	kJ/m²	ISO 180/1A
Izod Impact, notched 80*10*4 -30°C	8.3	kJ/m²	ISO 180/1A
Izod Impact, unnotched 80*10*4 +23°C	21.7	kJ/m²	ISO 180/1U
Izod Impact, unnotched 80*10*4 -30°C	18.3	kJ/m²	ISO 180/1U

© 2024 Copyright by SABIC. All rights reserved

CHEMISTRY THAT MATTERS"

PROPERTIES	TYPICAL VALUES	UNITS	TEST METHODS
Charpy 23°C, V-notch Edgew 80*10*3 sp=62mm	8.2	kJ/m²	ISO 179/1eA
Charpy -30°C, V-notch Edgew 80*10*3 sp=62mm	8.1	kJ/m²	ISO 179/1eA
Charpy 23°C, Unnotch Edgew 80*10*3 sp=62mm	20.9	kJ/m²	ISO 179/1eU
Charpy -30°C, Unnotch Edgew 80*10*3 sp=62mm	17.6	kJ/m²	ISO 179/1eU
Charpy 23°C, V-notch Edgew 80*10*4 sp=62mm	8.4	kJ/m²	ISO 179/1eA
Charpy -30°C, V-notch Edgew 80*10*4 sp=62mm	9.1	kJ/m²	ISO 179/1eA
Charpy 23°C, Unnotch Edgew 80*10*4 sp=62mm	21.8	kJ/m²	ISO 179/1eU
Charpy -30°C, Unnotch Edgew 80*10*4 sp=62mm	18	kJ/m²	ISO 179/1eU
Instrumented Dart Impact Total Energy, 23°C	6.6	J	ASTM D3763
Instrumented Dart Impact Energy @ peak, 23°C	3.4	J	ASTM D3763
THERMAL (1)			
HDT, 0.45 MPa, 3.2 mm, unannealed	280	°C	ASTM D648
HDT, 1.82 MPa, 3.2mm, unannealed	265	°C	ASTM D648
HDT/Bf, 0.45 MPa Flatw 80*10*4 sp=64mm	>280	°C	ISO 75/Bf
HDT/Af, 1.8 MPa Flatw 80*10*4 sp=64mm	261	°C	ISO 75/Af
CTE, 23°C to 150°C, flow	1.0E-05	1/°C	ASTM E831
CTE, 23°C to 150°C, xflow	5.5E-05	1/°C	ASTM E831
CTE, 23°C to 150°C, flow	1.1E-05	1/°C	ISO 11359-2
CTE, 23°C to 150°C, xflow	6.5E-05	1/°C	ISO 11359-2
Vicat Softening Temp, Rate B/50	204	°C	ISO 306
Vicat Softening Temp, Rate B/120	207	°C	ISO 306
Thermal Conductivity in-plane, 25*0.4mm disc	4.5	W/m-K	ASTM E1461-07
Thermal Conductivity through-plane, 10*10*3mm sample	1	W/m-K	ASTM E1461-07
PHYSICAL (1)			
Specific Gravity	1.72	-	ASTM D792
Water Absorption, (23°C/24hrs)	0.02	%	ISO 62-1
Melt Flow Rate			
345°C/2.16 kqf	150	g/10 min	ASTM D1238
Mold Shrinkage, flow ⁽²⁾	0.1	%	SABIC method
Mold Shrinkage, xflow ⁽²⁾	0.2	%	SABIC method
ELECTRICAL (1)			
Surface Resistivity	1 F±16	0	ASTM D257
Volume Resistivity	1.E+16 1.E+16	Ω.cm	ASTM D257 ASTM D257
Dielectric Constant, 1.1 GHz	4.06	22,011	SABIC method
	0.00307		SABIC method
Dissipation Factor, 1.1 GHz	4.12	-	
Dielectric Constant, 1.9 GHz	0.00289	_	SABIC method SABIC method
Dissipation Factor, 1.9 GHz		-	
Dielectric Constant, 5 GHz	4.07	-	SABIC method
Dissipation Factor, 5 GHz	0.00263 4.08	-	SABIC method
Dielectric Constant, 10 GHz		-	SABIC method
Dissipation Factor, 10 GHz	0.00285	-	SABIC method
INJECTION MOLDING (3)			
Drying Temperature	140 – 150	°C	
Drying Time	4 – 6	Hrs	
Melt Temperature	335 – 345	°C	

PROPERTIES	TYPICAL VALUES	UNITS	TEST METHODS
Nozzle Temperature	335 – 345	°C	
Front - Zone 3 Temperature	335 – 345	°C	
Middle - Zone 2 Temperature	335 – 340	°C	
Rear - Zone 1 Temperature	280 – 300	°C	
Mold Temperature	100 – 120	°C	
Back Pressure	0.1 – 0.4	MPa	
Screw Speed	80 – 100	rpm	

- (1) The information stated on Technical Datasheets should be used as indicative only for material selection purposes and not be utilized as specification or used for part or tool design.
- (2) Measurements made from laboratory test coupon. Actual shrinkage may vary outside of range due to differences in processing conditions, equipment, part geometry and tool design. It is recommended that mold shrinkage studies be performed with surrogate or legacy tooling prior to cutting tools for new molded article.
- (3) Injection Molding parameters are only mentioned as general guidelines. These may not apply or may need adjustment in specific situations such as low shot sizes, large part molding, thin wall molding and gas-assist molding.

DISCLAIMER

Any sale by SABIC, its subsidiaries and affiliates (each a "seller"), is made exclusively under seller's standard conditions of sale (available upon request) unless agreed otherwise in writing and signed on behalf of the seller. While the information contained herein is given in good faith, SELLER MAKES NO WARRANTY, EXPRESS OR IMPLIED, INCLUDING MERCHANTABILITY AND NONINFRINGEMENT OF INTELLECTUAL PROPERTY, NOR ASSUMES ANY LIABILITY, DIRECT OR INDIRECT, WITH RESPECT TO THE PERFORMANCE, SUITABILITY OR FITNESS FOR INTENDED USE OR PURPOSE OF THESE PRODUCTS IN ANY APPLICATION. Each customer must determine the suitability of seller materials for the customer's particular use through appropriate testing and analysis. No statement by seller concerning a possible use of any product, service or design is intended, or should be construed, to grant any license under any patent or other intellectual property right.