

## LNPTM THERMOCOMPTM COMPOUND WFC06IXP

## **DESCRIPTION**

LNP THERMOCOMP COMPOUND WFC06IXP is a compound based on Polybutylene terephthalate (PBT) containing Glass Fiber. Added features of this material include Chemical Resistance, Enhanced Dimensional Stability, Low Warpage, Dielectrics.

| GENERAL INFORMATION   |                                                                                                   |
|-----------------------|---------------------------------------------------------------------------------------------------|
| Features              | Chemical Resistance, Low Warpage, Dielectrics, Dimensional stability, No PFAS intentionally added |
| Fillers               | Glass Fiber                                                                                       |
| Polymer Types         | Polybutylene Terephthalate (PBT)                                                                  |
| Processing Techniques | Injection Molding                                                                                 |

| INDUSTRY   | SUB INDUSTRY                          |
|------------|---------------------------------------|
| Automotive | Automotive Interiors                  |
| Consumer   | Home Appliances, Commercial Appliance |
| Industrial | Electrical                            |

## TYPICAL PROPERTY VALUES

Revision 20241022

| PROPERTIES                                 | TYPICAL VALUES | UNITS      | TEST METHODS |
|--------------------------------------------|----------------|------------|--------------|
| MECHANICAL (1)                             |                |            |              |
| Tensile Stress, brk, Type I, 5 mm/min      | 115            | MPa        | ASTM D638    |
| Tensile Strain, brk, Type I, 5 mm/min      | 3              | %          | ASTM D638    |
| Tensile Modulus, 5 mm/min                  | 8370           | MPa        | ASTM D638    |
| Flexural Strength, 1.3 mm/min, 50 mm span  | 190            | MPa        | ASTM D790    |
| Flexural Modulus, 1.3 mm/min, 50 mm span   | 7660           | MPa        | ASTM D790    |
| IMPACT (1)                                 |                |            |              |
| Izod Impact, notched, -20°C                | 120            | J/m        | ASTM D256    |
| Izod Impact, notched, 23°C                 | 160            | J/m        | ASTM D256    |
| Izod Impact, unnotched, 23°C               | 1100           | J/m        | ASTM D4812   |
| Charpy 23°C, V-notch Edgew 80*10*4 sp=62mm | 15             | kJ/m²      | ISO 179/1eA  |
| Charpy 23°C, Unnotch Edgew 80*10*4 sp=62mm | 65             | kJ/m²      | ISO 179/1eU  |
| THERMAL (1)                                |                |            |              |
| HDT, 0.45 MPa, 3.2 mm, unannealed          | 218            | °C         | ASTM D648    |
| HDT, 1.82 MPa, 3.2mm, unannealed           | 193            | °C         | ASTM D648    |
| CTE, 23°C to 80°C, flow                    | 3.0E-05        | 1/°C       | ASTM E831    |
| CTE, 23°C to 80°C, xflow                   | 8.0E-05        | 1/°C       | ASTM E831    |
| PHYSICAL (1)                               |                |            |              |
| Specific Gravity                           | 1.5            | -          | ASTM D792    |
| Melt Volume Rate, MVR at 260°C/5.0 kg      | 11             | cm³/10 min | ISO 1133     |
| Mold Shrinkage, flow <sup>(2)</sup>        | 0.2 - 0.4      | %          | SABIC method |
| Mold Shrinkage, xflow <sup>(2)</sup>       | 0.4 – 0.6      | %          | SABIC method |
| ELECTRICAL (1)                             |                |            |              |
|                                            |                |            |              |



| PROPERTIES                             | TYPICAL VALUES    | UNITS | TEST METHODS |
|----------------------------------------|-------------------|-------|--------------|
| Dielectric Constant, 1.1 GHz           | 3.5               |       | SABIC method |
| Dissipation Factor, 1.1 GHz            | 0.008             | -     | SABIC method |
| Dielectric Constant, 1.9 GHz           | 3.7               | -     | SABIC method |
| Dissipation Factor, 1.9 GHz            | 0.008             | -     | SABIC method |
| Dielectric Constant, 5 GHz             | 3.6               | -     | SABIC method |
| Dissipation Factor, 5 GHz              | 0.007             | -     | SABIC method |
| Dielectric Constant, 10 GHz            | 3.6               | -     | SABIC method |
| Dissipation Factor, 10 GHz             | 0.007             | -     | SABIC method |
| Dielectric Constant, 20 GHz            | 3.4               | -     | SABIC method |
| Dissipation Factor, 20 GHz             | 0.008             | -     | SABIC method |
| Dielectric Constant, 77 GHz            | 3.5               | -     | SABIC method |
| Dissipation Factor, 77 GHz             | 0.009             | -     | SABIC method |
| FLAME CHARACTERISTICS (3)              |                   |       |              |
| UL Yellow Card Link                    | E207780-104566020 | -     | -            |
| UL Recognized, 94HB Flame Class Rating | ≥1.0              | mm    | UL 94        |
| INJECTION MOLDING (4)                  |                   |       |              |
| Drying Temperature                     | 120               | °C    |              |
| Drying Time                            | 4                 | Hrs   |              |
| Melt Temperature                       | 260 – 290         | °C    |              |
| Nozzle Temperature                     | 265 – 295         | °C    |              |
| Front - Zone 3 Temperature             | 260 – 290         | °C    |              |
| Middle - Zone 2 Temperature            | 260 – 290         | °C    |              |
| Rear - Zone 1 Temperature              | 250 – 280         | °C    |              |
| Mold Temperature                       | 50 – 110          | °C    |              |

- (1) The information stated on Technical Datasheets should be used as indicative only for material selection purposes and not be utilized as specification or used for part or tool design.
- (2) Measurements made from laboratory test coupon. Actual shrinkage may vary outside of range due to differences in processing conditions, equipment, part geometry and tool design. It is recommended that mold shrinkage studies be performed with surrogate or legacy tooling prior to cutting tools for new molded article.
- (3) UL Ratings shown on the technical datasheet might not cover the full range of thicknesses and colors. For details, please see the UL Yellow Card.
- (4) Injection Molding parameters are only mentioned as general guidelines. These may not apply or may need adjustment in specific situations such as low shot sizes, large part molding, thin wall molding and gas-assist molding.

## **DISCLAIMER**

Any sale by SABIC, its subsidiaries and affiliates (each a "seller"), is made exclusively under seller's standard conditions of sale (available upon request) unless agreed otherwise in writing and signed on behalf of the seller. While the information contained herein is given in good faith, SELLER MAKES NO WARRANTY, EXPRESS OR IMPLIED, INCLUDING MERCHANTABILITY AND NONINFRINGEMENT OF INTELLECTUAL PROPERTY, NOR ASSUMES ANY LIABILITY, DIRECT OR INDIRECT, WITH RESPECT TO THE PERFORMANCE, SUITABILITY OR FITNESS FOR INTENDED USE OR PURPOSE OF THESE PRODUCTS IN ANY APPLICATION. Each customer must determine the suitability of seller materials for the customer's particular use through appropriate testing and analysis. No statement by seller concerning a possible use of any product, service or design is intended, or should be construed, to grant any license under any patent or other intellectual property right.