

LNPTM KONDUITTM COMPOUND 0X11314

REGION EUROPE

DESCRIPTION

LNP KONDUIT OX11314 compound is based on Polyphenylene Sulfide (PPS) resin containing mineral and glass fiber. Added features of this grade include: Thermally Conductive, Electrically Insulative and Non-Brominated, Non-Chlorinated Flame Retardant.

GENERAL INFORMATION	
Features	Flame Retardant, Thermally Conductive, Non CI/Br flame retardant, Thermally conductive/Electrically isolative, No PFAS intentionally added
Fillers	Glass Fiber, Mineral
Polymer Types	Polyphenylene Sulfide, Linear (PPS, Linear)
Processing Techniques	Injection Molding

INDUSTRY	SUB INDUSTRY
Building and Construction	Building Component
Consumer	Home Appliances
Electrical and Electronics	Mobile Phone - Computer - Tablets, Lighting
Industrial	Electrical, Material Handling

TYPICAL PROPERTY VALUES

Revision 20250124

PROPERTIES	TYPICAL VALUES	UNITS	TEST METHODS
MECHANICAL (1)			
Tensile Stress, break, 5 mm/min	50	MPa	ISO 527
Tensile Strain, break, 5 mm/min	0.5	%	ISO 527
Tensile Modulus, 1 mm/min	15000	MPa	ISO 527
Flexural Stress, yield, 2 mm/min	75	MPa	ISO 178
Flexural Modulus, 2 mm/min	15500	MPa	ISO 178
IMPACT (1)			
Izod Impact, unnotched 80*10*4 +23°C	6	kJ/m²	ISO 180/1U
Izod Impact, notched 80*10*4 +23°C	2	kJ/m²	ISO 180/1A
THERMAL (1)			
CTE, -40°C to 40°C, flow	2.E-05	1/°C	ASTM E831
CTE, -40°C to 40°C, xflow	3.E-05	1/°C	ASTM E831
CTE, -30°C to 80°C, flow	2.1E-05	1/°C	ISO 11359-2
CTE, -30°C to 80°C, xflow	3.2E-05	1/°C	ISO 11359-2
CTE, 23°C to 80°C, flow	2.2E-05	1/°C	ISO 11359-2
CTE, 23°C to 80°C, xflow	3.5E-05	1/°C	ISO 11359-2
Thermal Conductivity through-plane, ?80*3mm discs	0.75	W/m-K	ISO 22007-2
Thermal Conductivity in-plane, ?80*3mm discs	1.95	W/m-K	ISO 22007-2
Ball Pressure Test, 125°C +/- 2°C	PASSES	-	IEC 60695-10-2
Vicat Softening Temp, Rate B/120	254	°C	ISO 306

PROPERTIES	TYPICAL VALUES	UNITS	TEST METHODS
HDT/Bf, 0.45 MPa Flatw 80*10*4 sp=64mm	261	°C	ISO 75/Bf
HDT/Af, 1.8 MPa Flatw 80*10*4 sp=64mm	211	°C	ISO 75/Af
PHYSICAL (1)			
Mold Shrinkage on Tensile Bar, flow ⁽²⁾	0.26	%	SABIC method
Mold Shrinkage, flow, 24 hrs ⁽²⁾	0.39	%	ISO 294
Mold Shrinkage, xflow, 24 hrs ⁽²⁾	0.41	%	ISO 294
Density	1.91	g/cm³	ISO 1183
ELECTRICAL (1)			
Comparative Tracking Index (3)	575	V	IEC 60112
Comparative Tracking Index (UL) {PLC} (3)	0	PLC Code	UL 746A
Surface Resistivity	1.E+15	Ω	ASTM D257
FLAME CHARACTERISTICS (1)			
UL Recognized, 94V-0 Flame Class Rating (3)	≥0.8	mm	UL 94
INJECTION MOLDING (4)			
Drying Temperature	120 – 150	°C	
Drying Time	4	Hrs	
Melt Temperature	320 – 350	°C	
Front - Zone 3 Temperature	315 – 345	°C	
Middle - Zone 2 Temperature	315 – 345	°C	
Rear - Zone 1 Temperature	315 – 345	°C	
Mold Temperature	110 – 150	°C	
Back Pressure	0.3 – 0.7	MPa	
Screw Speed	60 – 100	rpm	
Shot to Cylinder Size	50 – 75	%	

⁽¹⁾ The information stated on Technical Datasheets should be used as indicative only for material selection purposes and not be utilized as specification or used for part or tool design.

DISCLAIMER

Any sale by SABIC, its subsidiaries and affiliates (each a "seller"), is made exclusively under seller's standard conditions of sale (available upon request) unless agreed otherwise in writing and signed on behalf of the seller. While the information contained herein is given in good faith, SELLER MAKES NO WARRANTY, EXPRESS OR IMPLIED, INCLUDING MERCHANTABILITY AND NONINFRINGEMENT OF INTELLECTUAL PROPERTY, NOR ASSUMES ANY LIABILITY, DIRECT OR INDIRECT, WITH RESPECT TO THE PERFORMANCE, SUITABILITY OR FITNESS FOR INTENDED USE OR PURPOSE OF THESE PRODUCTS IN ANY APPLICATION. Each customer must determine the suitability of seller materials for the customer's particular use through appropriate testing and analysis. No statement by seller concerning a possible use of any product, service or design is intended, or should be construed, to grant any license under any patent or other intellectual property right.

⁽²⁾ Measurements made from laboratory test coupon. Actual shrinkage may vary outside of range due to differences in processing conditions, equipment, part geometry and tool design. It is recommended that mold shrinkage studies be performed with surrogate or legacy tooling prior to cutting tools for new molded article.

⁽³⁾ Value shown here is based on internal measurement.

⁽⁴⁾ Injection Molding parameters are only mentioned as general guidelines. These may not apply or may need adjustment in specific situations such as low shot sizes, large part molding, thin wall molding and gas-assist molding.