

## LNPTM THERMOCOMPTM COMPOUND DC0041XX5

## **DESCRIPTION**

LNP THERMOCOMP DC0041XX5 compound is based on PC Copolymer Resin containing 20% carbon fiber suitable for injection molding applications. Added features of this grade include: Higher Stiffness vs. glass fiber, Higher Strength. This halogen-free flame retardant resin is EN45545 R6 HL3 compliant and is targeted for train interior applications (category R6).

| GENERAL INFORMATION   |                                                                                                                                |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Features              | Flame Retardant, Low Smoke and Toxicity, Non halogenated flame retardant, High stiffness/Strength, No PFAS intentionally added |
| Fillers               | Carbon Fiber                                                                                                                   |
| Polymer Types         | Polycarbonate (PC)                                                                                                             |
| Processing Techniques | Injection Molding                                                                                                              |

| INDUSTRY            | SUB INDUSTRY |
|---------------------|--------------|
| Mass Transportation | Rail         |

## TYPICAL PROPERTY VALUES

Revision 20240711

| PROPERTIES                                 | TYPICAL VALUES | UNITS | TEST METHODS         |
|--------------------------------------------|----------------|-------|----------------------|
| MECHANICAL (1)                             |                |       |                      |
| Tensile Modulus, 1 mm/min                  | 16200          | MPa   | ISO 527              |
| Tensile Stress, break, 5 mm/min            | 160            | MPa   | ISO 527              |
| Tensile Strain, break, 5 mm/min            | 2              | %     | ISO 527              |
| Flexural Modulus, 2 mm/min                 | 11800          | MPa   | ISO 178              |
| Flexural Strength, 2 mm/min                | 210            | MPa   | ISO 178              |
| Tensile Modulus, 5 mm/min                  | 16200          | MPa   | ASTM D638            |
| Tensile Stress, brk, Type I, 5 mm/min      | 170            | MPa   | ASTM D638            |
| Tensile Strain, brk, Type I, 5 mm/min      | 3              | %     | ASTM D638            |
| Flexural Modulus, 1.3 mm/min, 50 mm span   | 11800          | MPa   | ASTM D790            |
| Flexural Strength, 1.3 mm/min, 50 mm span  | 220            | MPa   | ASTM D790            |
| IMPACT (1)                                 |                |       |                      |
| Izod Impact, notched 80*10*4 +23°C         | 6              | kJ/m² | ISO 180/1A           |
| Izod Impact, unnotched 80*10*4 +23°C       | 30             | kJ/m² | ISO 180/1U           |
| Charpy 23°C, V-notch Edgew 80*10*4 sp=62mm | 8              | kJ/m² | ISO 179/1eA          |
| Charpy 23°C, Unnotch Edgew 80*10*4 sp=62mm | 30             | kJ/m² | ISO 179/1eU          |
| Izod Impact, notched, 23°C                 | 55             | J/m   | ASTM D256            |
| Izod Impact, unnotched, 23°C               | 420            | J/m   | ASTM D4812           |
| THERMAL (1)                                |                |       |                      |
| HDT/Af, 1.8 MPa Flatw 80*10*4 sp=64mm      | 109            | °C    | ISO 75/Af            |
| HDT/Bf, 0.45 MPa Flatw 80*10*4 sp=64mm     | 115            | °C    | ISO 75/Bf            |
| Vicat Softening Temp, Rate B/50            | 120            | °C    | ISO 306              |
| Vicat Softening Temp, Rate B/120           | 122            | °C    | ISO 306              |
| CTE, -40°C to 40°C, flow                   | 1.4E-05        | 1/°C  | ISO 11359-2          |
|                                            |                | CLIE  | MICTON THAT MAATTEDC |



| PROPERTIES                               | TYPICAL VALUES | UNITS      | TEST METHODS |
|------------------------------------------|----------------|------------|--------------|
| CTE, -40°C to 40°C, xflow                | 5.6E-05        | 1/°C       | ISO 11359-2  |
| HDT, 1.82 MPa, 3.2mm, unannealed         | 96             | °C         | ASTM D648    |
| HDT, 0.45 MPa, 3.2 mm, unannealed        | 107            | °C         | ASTM D648    |
| CTE, ·40°C to 40°C, flow                 | 1.4E-05        | 1/°C       | ASTM E831    |
| CTE, -40°C to 40°C, xflow                | 5.6E-05        | 1/°C       | ASTM E831    |
| PHYSICAL (1)                             |                |            |              |
| Density                                  | 1.39           | g/cm³      | ISO 1183     |
| Melt Volume Rate, MVR at 300°C/1.2 kg    | 5              | cm³/10 min | ISO 1133     |
| Mold Shrinkage, flow (2)                 | 0.1 – 0.2      | %          | SABIC method |
| Mold Shrinkage, xflow <sup>(2)</sup>     | 0.2 - 0.3      | %          | SABIC method |
| Moisture Absorption, (23°C/50% RH/24hrs) | 0.1 – 0.15     | %          | ISO 62-4     |
| Specific Gravity                         | 1.39           | -          | ASTM D792    |
| ELECTRICAL (1)                           |                |            |              |
| Surface Resistivity                      | 1E+02 – 1E+04  | Ω          | ASTM D257    |
| INJECTION MOLDING (3)                    |                |            |              |
| Drying Temperature                       | 90 – 100       | °C         |              |
| Drying Time                              | 6 – 8          | Hrs        |              |
| Drying Time (Cumulative)                 | 12             | Hrs        |              |
| Maximum Moisture Content                 | 0.002          | %          |              |
| Melt Temperature                         | 250 – 280      | °C         |              |
| Hopper Temperature                       | 40 – 80        | °C         |              |
| Rear - Zone 1 Temperature                | 240 – 260      | °C         |              |
| Middle - Zone 2 Temperature              | 250 – 270      | °C         |              |
| Front - Zone 3 Temperature               | 260 – 280      | °C         |              |
| Nozzle Temperature                       | 255 – 275      | °C         |              |
| Mold Temperature                         | 60 – 90        | °C         |              |
| Back Pressure                            | 0.3 – 0.7      | MPa        |              |
| Screw speed (Circumferential speed)      | 60 – 100       | m/s        |              |
| Shot to Cylinder Size                    | 40 – 60        | %          |              |
| Vent Depth                               | 0.025 - 0.076  | mm         |              |

<sup>(1)</sup> The information stated on Technical Datasheets should be used as indicative only for material selection purposes and not be utilized as specification or used for part or tool design.

## **DISCLAIMER**

Any sale by SABIC, its subsidiaries and affiliates (each a "seller"), is made exclusively under seller's standard conditions of sale (available upon request) unless agreed otherwise in writing and signed on behalf of the seller. While the information contained herein is given in good faith, SELLER MAKES NO WARRANTY, EXPRESS OR IMPLIED, INCLUDING MERCHANTABILITY AND NONINFRINGEMENT OF INTELLECTUAL PROPERTY, NOR ASSUMES ANY LIABILITY, DIRECT OR INDIRECT, WITH RESPECT TO THE PERFORMANCE, SUITABILITY OR FITNESS FOR INTENDED USE OR PURPOSE OF THESE PRODUCTS IN ANY APPLICATION. Each customer must determine the suitability of seller materials for the customer's particular use through appropriate testing and analysis. No statement by seller concerning a possible use of any product, service or design is intended, or should be construed, to grant any license under any patent or other intellectual property right.

<sup>(2)</sup> Measurements made from laboratory test coupon. Actual shrinkage may vary outside of range due to differences in processing conditions, equipment, part geometry and tool design. It is recommended that mold shrinkage studies be performed with surrogate or legacy tooling prior to cutting tools for new molded article.

<sup>(3)</sup> Injection Molding parameters are only mentioned as general guidelines. These may not apply or may need adjustment in specific situations such as low shot sizes, large part molding, thin wall molding and gas-assist molding.