

Revision 20231219

LNPTM THERMOCOMPTM COMPOUND ZKC09

DESCRIPTION

LNP THERMOCOMP ZKC09 compound is based on Polyphenylene Ether / Polystyrene (PPE/PS) blend containing minerals and impact modifier. Added features of this grade include: High Dielectric Constant (Dk), Extremely Low Dissipation Factor (Df), and Good Thermal Performance.

GENERAL INFORMATION	
Features	Dielectrics, Low Moisture Absorption, Dimensional stability, No PFAS intentionally added
Fillers	Mineral
Polymer Types	Polyphenylene Ether + PS (PPE+PS)
Processing Techniques	Injection Molding
INDUSTRY	

INDUSTRY	SUB INDUSTRY
Automotive	Automotive Interiors
Electrical and Electronics	Wireless Communication

TYPICAL PROPERTY VALUES

PROPERTIES **TYPICAL VALUES** UNITS **TEST METHODS** MECHANICAL⁽¹⁾ Tensile Stress, yld, Type I, 5 mm/min 55 MPa ASTM D638 49 Tensile Stress, brk, Type I, 5 mm/min MPa ASTM D638 Tensile Strain, yld, Type I, 5 mm/min 3.3 ASTM D638 % Tensile Strain, brk, Type I, 5 mm/min 6.8 % ASTM D638 Tensile Modulus, 5 mm/min 3200 MPa ASTM D638 97 ASTM D790 Flexural Strength, 1.3 mm/min, 50 mm span MPa Flexural Modulus, 1.3 mm/min, 50 mm span 3060 MPa ASTM D790 55 ISO 527 Tensile Stress, yield, 5 mm/min MPa Tensile Stress, break, 5 mm/min 51 MPa ISO 527 Tensile Strain, yield, 5 mm/min 3.3 % ISO 527 Tensile Strain, break, 5 mm/min 7.0 % ISO 527 Tensile Modulus, 1 mm/min 3200 MPa ISO 527 Flexural Strength, 2 mm/min 96 MPa ISO 178 Flexural Modulus, 2 mm/min 3100 MPa ISO 178 IMPACT (1) Izod Impact, notched, 23°C 146 ASTM D256 J/m Izod Impact, notched, -30°C 119 ASTM D256 J/m Izod Impact, unnotched, 23°C 1300 J/m ASTM D4812 Izod Impact, notched 80*10*4 +23°C 12 ISO 180/1A kJ/m² Izod Impact, notched 80*10*4 -30°C 11 kJ/m² ISO 180/1A Izod Impact, unnotched 80*10*4 +23°C ISO 180/1U 67 kJ/m² Charpy 23°C, V-notch Edgew 80*10*4 sp=62mm 13 kJ/m² ISO 179/1eA Charpy -30°C, V-notch Edgew 80*10*4 sp=62mm 9 kJ/m² ISO 179/1eA

© 2024 Copyright by SABIC. All rights reserved

CHEMISTRY THAT MATTERS

PROPERTIES	TYPICAL VALUES	UNITS	TEST METHODS
Charpy 23°C, Unnotch Edgew 80*10*4 sp=62mm	86	kJ/m²	ISO 179/1eU
THERMAL ⁽¹⁾			
HDT, 0.45 MPa, 3.2 mm, unannealed	173	°C	ASTM D648
HDT, 1.82 MPa, 3.2mm, unannealed	159	°C	ASTM D648
HDT/Bf, 0.45 MPa Flatw 80*10*4 sp=64mm	173	°C	ISO 75/Bf
HDT/Af, 1.8 MPa Flatw 80*10*4 sp=64mm	159	°C	ISO 75/Af
CTE			
-40°C to 40°C, flow	5.4E-5	1/°C	ASTM E831
-40°C to 40°C, xflow	6.9E-5	1/°C	ASTM E831
-40°C to 90°C, flow	5.5E-5	1/°C	ASTM E831
-40°C to 90°C, xflow	7.1E-5	1/°C	ASTM E831
PHYSICAL ⁽¹⁾			
Specific Gravity	1.6	-	ASTM D792
Water Absorption, (23°C/24hrs)	0.07	%	ISO 62-1
Moisture Absorption, (23°C/50% RH/24hrs)	0.02	%	ISO 62-4
Melt Flow Rate, 300°C/5.0 kgf	6.3	g/10 min	ASTM D1238
Melt Volume Rate, MVR at 300°C/5.0 kg	4.2	cm³/10 min	ASTM D1238
Mold Shrinkage, flow (2)	0.7 – 0.9	%	SABIC method
Mold Shrinkage, xflow ⁽²⁾	0.7 – 0.9	%	SABIC method
ELECTRICAL ⁽¹⁾			
Dielectric Constant, 1.1 GHz	4.55	-	SABIC method
Dissipation Factor, 1.1 GHz	0.0011	-	SABIC method
Dielectric Constant, 1.9 GHz	4.55		SABIC method
Dissipation Factor, 1.9 GHz	0.0013	-	SABIC method
Dielectric Constant, 5 GHz	4.56	-	SABIC method
Dissipation Factor, 5 GHz	0.0018	-	SABIC method
INJECTION MOLDING ⁽³⁾			
Drying Temperature	105 – 120	°C	
Drying Time	3 – 5	Hrs	
Melt Temperature	290 - 320	°C	
Nozzle Temperature	290 – 320	°C	
Front - Zone 3 Temperature	290 - 320	°C	
Middle - Zone 2 Temperature	280 - 310	°C	
Rear - Zone 1 Temperature	270 - 300	°C	
Mold Temperature	90 – 120	°C	
Back Pressure	0.3 - 0.9	MPa	
Screw Speed	50 – 150	rpm	

(1) The information stated on Technical Datasheets should be used as indicative only for material selection purposes and not be utilized as specification or used for part or tool design.

(2) Measurements made from laboratory test coupon. Actual shrinkage may vary outside of range due to differences in processing conditions, equipment, part geometry and tool design. It is recommended that mold shrinkage studies be performed with surrogate or legacy tooling prior to cutting tools for new molded article.

(3) Injection Molding parameters are only mentioned as general guidelines. These may not apply or may need adjustment in specific situations such as low shot sizes, large part molding, thin wall molding and gas-assist molding.

DISCLAIMER

Any sale by SABIC, its subsidiaries and affiliates (each a "seller"), is made exclusively under seller's standard conditions of sale (available upon request) unless agreed otherwise in writing and signed on behalf of the seller. While the information contained herein is given in good faith, SELLER MAKES NO WARRANTY, EXPRESS OR IMPLIED, INCLUDING MERCHANTABILITY AND NONINFRINGEMENT OF INTELLECTUAL PROPERTY, NOR ASSUMES ANY LIABILITY, DIRECT OR INDIRECT, WITH RESPECT TO THE PERFORMANCE, SUITABILITY OR FITNESS FOR INTENDED USE OR PURPOSE OF THESE PRODUCTS IN ANY APPLICATION. Each customer must determine the suitability of seller materials for the customer's particular use through appropriate testing and analysis. No statement by seller concerning a possible use of any product, service or design is intended, or should be construed, to grant any license under any patent or other intellectual property right.