

LNPTM THERMOCOMPTM COMPOUND EC008PXQ

EC008PXQ

DESCRIPTION

LNP THERMOCOMP EC008PXQ compound is based on Polyetherimide (PEI) resin containing 40% carbon fiber. Added features of this grade include: Electrically Conductive, Exceptional Processing, FAR25.853 Compliant.

GENERAL INFORMATION	
Features	Flame Retardant, Electrically Conductive, High Flow, Carbon fiber filled, High stiffness/Strength, High temperature resistance, No PFAS intentionally added
Fillers	Carbon Fiber
Polymer Types	Polyetherimide (PEI)
Processing Techniques	Injection Molding

INDUSTRY	SUB INDUSTRY
Automotive	Automotive Under the Hood, Aerospace
Building and Construction	Building Component
Consumer	Sport/Leisure
Industrial	Electrical

TYPICAL PROPERTY VALUES

PROPERTIES **TYPICAL VALUES** UNITS **TEST METHODS** MECHANICAL (1) Tensile Stress, brk, Type I, 5 mm/min 272 MPa ASTM D638 Tensile Strain, brk, Type I, 5 mm/min % ASTM D638 1 38600 Tensile Modulus, 5 mm/min MPa ASTM D638 Flexural Stress, brk, 1.3 mm/min, 50 mm span 372 MPa ASTM D790 ASTM D790 Flexural Modulus, 1.3 mm/min, 50 mm span 32600 MPa Hardness, Rockwell M 112 ASTM D785 Tensile Stress, break, 5 mm/min 247 MPa ISO 527 Tensile Strain, break, 5 mm/min 0.9 ISO 527 % 35480 MPa ISO 527 Tensile Modulus, 1 mm/min Flexural Stress, break, 2 mm/min 364 MPa ISO 178 30560 ISO 178 Flexural Modulus, 2 mm/min MPa SABIC method **Compressive Strength** 222 MPa Shear Modulus 4656 MPa ASTM D732 Shear Strength 120 ASTM D732 MPa IMPACT (1) 597 Izod Impact, unnotched, 23°C J/m ASTM D4812 Izod Impact, notched, 23°C 74 J/m ASTM D256 7 Instrumented Dart Impact Total Energy, 23°C ASTM D3763 ISO 180/1U Izod Impact, unnotched 80*10*4 +23°C 33 kJ/m²

© 2024 Copyright by SABIC. All rights reserved

CHEMISTRY THAT MATTERS

Revision 20230607

PROPERTIES	TYPICAL VALUES	UNITS	TEST METHODS
Izod Impact, notched 80*10*4 +23°C	6	kJ/m²	ISO 180/1A
THERMAL ⁽¹⁾			
HDT, 1.82 MPa, 3.2mm, unannealed	193	°C	ASTM D648
CTE, -40°C to 150°C, flow	2.7E-06	1/°C	ASTM E831
CTE, -40°C to 150°C, xflow	3.6E-05	1/°C	ASTM E831
PHYSICAL ⁽¹⁾			
Specific Gravity	1.44		ASTM D792
Density	1.43	g/cm ³	ASTM D792
Moisture Absorption, (23°C/50% RH/24 hrs)	0.11	%	ASTM D570
Mold Shrinkage, flow, 24 hrs ⁽²⁾	0.1 – 0.3	%	ASTM D955
Mold Shrinkage, xflow, 24 hrs ⁽²⁾	0.1 – 0.5	%	ASTM D955
Melt Flow Rate, 380°C/6.7 kgf	15	g/10 min	ASTM D1238
Poisson's Ratio	0.4	-	ASTM E132
ELECTRICAL ⁽¹⁾			
Volume Resistivity	4.5E+02	Ω.cm	ASTM D257
Surface Resistivity	4.1E+03	Ω	ASTM D257
INJECTION MOLDING ⁽³⁾			
Drying Temperature	150	°C	
Drying Time	4 - 6	Hrs	
Maximum Moisture Content	0.02	%	
Melt Temperature	360 - 400	°C	
Rear - Zone 1 Temperature	360 – 380	°C	
Middle - Zone 2 Temperature	370 – 390	°C	
Front - Zone 3 Temperature	380 - 400	°C	
Nozzle Temperature	390 - 400	°C	
Mold Temperature	140 – 180	°C	
Back Pressure	0.3 – 0.7	MPa	
Screw speed (Circumferential speed)	0.2 - 0.3	m/s	
Vent Depth	0.025 - 0.076	mm	

(1) The information stated on Technical Datasheets should be used as indicative only for material selection purposes and not be utilized as specification or used for part or tool design.

(2) Measurements made from laboratory test coupon. Actual shrinkage may vary outside of range due to differences in processing conditions, equipment, part geometry and tool design. It is recommended that mold shrinkage studies be performed with surrogate or legacy tooling prior to cutting tools for new molded article.

(3) Injection Molding parameters are only mentioned as general guidelines. These may not apply or may need adjustment in specific situations such as low shot sizes, large part molding, thin wall molding and gas-assist molding.

MORE INFORMATION

For curve data and CAE cards, please visit and register at https://materialfinder.sabic-specialties.com

DISCLAIMER

Any sale by SABIC, its subsidiaries and affiliates (each a "seller"), is made exclusively under seller's standard conditions of sale (available upon request) unless agreed otherwise in writing and signed on behalf of the seller. While the information contained herein is given in good faith, SELLER MAKES NO WARRANTY, EXPRESS OR IMPLIED, INCLUDING MERCHANTABILITY AND NONINFRINGEMENT OF INTELLECTUAL PROPERTY, NOR ASSUMES ANY LIABILITY, DIRECT OR INDIRECT, WITH RESPECT TO THE PERFORMANCE, SUITABILITY OR FITNESS FOR INTENDED USE OR PURPOSE OF THESE PRODUCTS IN ANY APPLICATION. Each customer must determine the suitability of seller materials for the customer's particular use through appropriate testing and analysis. No statement by seller concerning a possible use of any product, service or design is intended, or should be construed, to grant any license under any patent or other intellectual property right.