LNPTM THERMOCOMPTM COMPOUND DF0041VI

DESCRIPTION

LNP THERMOCOMP DF0041VI compound is based on Polycarbonate (PC) resin containing 20% glass fiber. Added features of this grade include: Improved Plating Surface and Mechanical Performance targeted for Laser Direct Structuring (LDS) applications, Non-Brominated, Non-Chlorinated Flame Retardant, Wide Processing Window.

GENERAL INFORMATION	
Features	Flame Retardant, Dielectrics, Laser Direct Structuring, Non Cl/Br flame retardant, High stiffness/Strength
Fillers	Glass Fiber
Polymer Types	Polycarbonate (PC)
Processing Techniques	Injection Molding

INDUSTRY	SUB INDUSTRY
Building and Construction	Building Component
Consumer	Personal Accessory
Electrical and Electronics	Mobile Phone - Computer - Tablets
Industrial	Electrical

TYPICAL PROPERTY VALUES

PROPERTIES TYPICAL VALUES UNITS TEST METHODS MECHANICAL⁽¹⁾ 85 Tensile Stress, brk, Type I, 5 mm/min MPa ASTM D638 Tensile Strain, brk, Type I, 5 mm/min 2.5 % ASTM D638 Tensile Modulus, 5 mm/min 7000 ASTM D638 MPa 6000 ASTM D790 Flexural Modulus, 1.3 mm/min, 50 mm span MPa Flexural Strength, 1.3 mm/min, 50 mm span 125 MPa ASTM D790 Tensile Stress, break, 5 mm/min 86 MPa ISO 527 Tensile Strain, break, 5 mm/min ISO 527 2.5 % Tensile Modulus, 1 mm/min 6900 MPa ISO 527 ISO 178 Flexural Modulus, 2 mm/min 6400 MPa 130 ISO 178 Flexural Strength, 2 mm/min MPa IMPACT (1) 80 ASTM D256 Izod Impact, notched, 23°C J/m Izod Impact, unnotched, 23°C 450 J/m ASTM D4812 Izod Impact, notched 80*10*4 +23°C 8 ISO 180/1A kJ/m² Izod Impact, unnotched 80*10*4 +23°C 26 kJ/m² ISO 180/1U Charpy 23°C, V-notch Edgew 80*10*4 sp=62mm 8 kJ/m² ISO 179/1eA Charpy 23°C, Unnotch Edgew 80*10*4 sp=62mm 30 kJ/m² ISO 179/1eU THERMAL (1) HDT, 0.45 MPa, 3.2 mm, unannealed 124 °C ASTM D648 HDT, 1.82 MPa, 3.2mm, unannealed 118 °C ASTM D648

© 2024 Copyright by SABIC. All rights reserved

CHEMISTRY THAT MATTERS

Revision 20241021

PROPERTIES	TYPICAL VALUES	UNITS	TEST METHODS
PHYSICAL ⁽¹⁾			
Density	1.4	g/cm ³	ASTM D792
Melt Flow Rate, 300°C/2.16 kgf	17	g/10 min	ASTM D1238
Melt Flow Rate, 300°C/1.2 kgf	10	g/10 min	ASTM D1238
Mold Shrinkage, flow ⁽²⁾	0.2 - 0.4	%	SABIC method
Mold Shrinkage, xflow ⁽²⁾	0.2 - 0.4	%	SABIC method
ELECTRICAL ⁽¹⁾			
Dielectric Constant, 1.1 GHz	3.367	-	SABIC method
Dissipation Factor, 1.1 GHz	0.008	-	SABIC method
Dielectric Constant, 1.9 GHz	3.363	-	SABIC method
Dissipation Factor, 1.9 GHz	0.005	-	SABIC method
Dielectric Constant, 5 GHz	3.347	-	SABIC method
Dissipation Factor, 5 GHz	0.007	-	SABIC method
Dielectric Constant, 10 GHz	3.323	-	SABIC method
Dissipation Factor, 10 GHz	0.007		SABIC method
Dielectric Constant, 20 GHz	3.157	-	SABIC method
Dissipation Factor, 20 GHz	0.007		SABIC method
INJECTION MOLDING ⁽³⁾			
Drying Temperature	110 – 120	°C	
Drying Time	3 – 4	Hrs	
Melt Temperature	290 – 310	°C	
Nozzle Temperature	285 – 310	°C	
Front - Zone 3 Temperature	285 – 310	°C	
Middle - Zone 2 Temperature	285 – 310	°C	
Rear - Zone 1 Temperature	285 - 310	°C	
Mold Temperature	100 – 130	°C	
Back Pressure	0.1 – 0.3	MPa	
Screw Speed	50 – 150	rpm	

(1) The information stated on Technical Datasheets should be used as indicative only for material selection purposes and not be utilized as specification or used for part or tool design.

(2) Measurements made from laboratory test coupon. Actual shrinkage may vary outside of range due to differences in processing conditions, equipment, part geometry and tool design. It is recommended that mold shrinkage studies be performed with surrogate or legacy tooling prior to cutting tools for new molded article.

(3) Injection Molding parameters are only mentioned as general guidelines. These may not apply or may need adjustment in specific situations such as low shot sizes, large part molding, thin wall molding and gas-assist molding.

DISCLAIMER

Any sale by SABIC, its subsidiaries and affiliates (each a "seller"), is made exclusively under seller's standard conditions of sale (available upon request) unless agreed otherwise in writing and signed on behalf of the seller. While the information contained herein is given in good faith, SELLER MAKES NO WARRANTY, EXPRESS OR IMPLIED, INCLUDING MERCHANTABILITY AND NONINFRINGEMENT OF INTELLECTUAL PROPERTY, NOR ASSUMES ANY LIABILITY, DIRECT OR INDIRECT, WITH RESPECT TO THE PERFORMANCE, SUITABILITY OR FITNESS FOR INTENDED USE OR PURPOSE OF THESE PRODUCTS IN ANY APPLICATION. Each customer must determine the suitability of seller materials for the customer's particular use through appropriate testing and analysis. No statement by seller concerning a possible use of any product, service or design is intended, or should be construed, to grant any license under any patent or other intellectual property right.