

NORYL PPXTM RESIN PPX7115P

DESCRIPTION

NORYL PPX7115P resin is a non-reinforced alloy of polyphenylene ether (PPE) + polypropylene (PP). This injection moldable grade exhibits high modulus, high temperature performance, excellent melt strength, impact resistance, hydrolytic and dimensional stability. Target applications of NORYL PPX7115P are Automotive, Energy management and electrical component requiring high modulus and chemical resistance. See PPX7115PF for Food contact compliant version.

GENERAL INFORMATION	
Features	Chemical Resistance, Hydrolytic Stability, Low Warpage, Low Shrinkage, Low Moisture Absorption, Low Specific Gravity, Dimensional stability, High stiffness/Strength, High temperature resistance, Impact resistant, Weatherable/UV stable, No PFAS intentionally added
Fillers	Unreinforced
Polymer Types	Polyphenylene Ether + PP (PPE+PP)
Processing Techniques	Injection Molding
INDUSTRY	SUB INDUSTRY

Automotive	Automotive EV Batteries
Electrical and Electronics	Energy Management
Industrial	Electrical

TYPICAL PROPERTY VALUES

Revision 20231109

PROPERTIES	TYPICAL VALUES	UNITS	TEST METHODS
MECHANICAL (1)			
Tensile Stress, yld, Type I, 50 mm/min	35	MPa	ASTM D638
Tensile Stress, brk, Type I, 50 mm/min	34	MPa	ASTM D638
Tensile Strain, yld, Type I, 50 mm/min	8	%	ASTM D638
Tensile Strain, brk, Type I, 50 mm/min	125	%	ASTM D638
Tensile Modulus, 50 mm/min	1240	MPa	ASTM D638
Flexural Strength, 1.3 mm/min, 50 mm span	51	MPa	ASTM D790
Flexural Modulus, 1.3 mm/min, 50 mm span	1370	MPa	ASTM D790
Tensile Stress, yield, 50 mm/min	30	MPa	ISO 527
Tensile Strain, break, 50 mm/min	125	%	ISO 527
Tensile Modulus, 1 mm/min	1425	MPa	ISO 527
Flexural Strength, 2 mm/min	46	MPa	ISO 178
Flexural Modulus, 2 mm/min	1439	MPa	ISO 178
IMPACT (1)			
Izod Impact, notched, 23°C	534	J/m	ASTM D256
Izod Impact, notched, -30°C	81	J/m	ASTM D256
Izod Impact, notched 80*10*4 +23°C	37	kJ/m²	ISO 180/1A
Izod Impact, notched 80*10*4 -30°C	8	kJ/m²	ISO 180/1A
Instrumented Dart Impact Total Energy, 23°C	37	J	ASTM D3763
Instrumented Dart Impact Total Energy, -30°C	30	J	ASTM D3763

DROBERTIES	TVDICAL VALUES	LINUTC	TEST METHODS
PROPERTIES	TYPICAL VALUES	UNITS	TEST METHODS
THERMAL (1)			
HDT, 0.45 MPa, 3.2 mm, unannealed	111	°C	ASTM D648
HDT, 1.82 MPa, 3.2mm, unannealed	84	°C	ASTM D648
HDT/Bf, 0.45 MPa Flatw 80*10*4 sp=64mm	110	°C	ISO 75/Bf
HDT/Af, 1.8 MPa Flatw 80*10*4 sp=64mm	82	°C	ISO 75/Af
CTE, -40°C to 40°C, flow	7.8E-05	1/°C	ASTM E831
CTE, -40°C to 40°C, xflow	1.3E-04	1/°C	ASTM E831
Vicat Softening Temp, Rate B/50	83	°C	ASTM D1525
Vicat Softening Temp, Rate A/50	131	°C	ISO 306
PHYSICAL (1)			
Specific Gravity	0.99	-	ASTM D792
Melt Flow Rate, 260°C/5.0 kgf	16	g/10 min	ASTM D1238
Melt Volume Rate, MVR at 260°C/5.0 kg	14	cm³/10 min	ISO 1133
Mold Shrinkage, flow ⁽²⁾	0.6 - 0.8	%	SABIC method
Mold Shrinkage, xflow ⁽²⁾	0.6 - 0.8	%	SABIC method
INJECTION MOLDING (3)			
Drying Temperature	60 – 65	°C	
Drying Time	2 – 4	Hrs	
Drying Time (Cumulative)	8	Hrs	
Maximum Moisture Content	0.02	%	
Melt Temperature	260 – 290	°C	
Nozzle Temperature	260 – 290	°C	
Front - Zone 3 Temperature	250 – 290	°C	
Middle - Zone 2 Temperature	240 – 280	°C	
Rear - Zone 1 Temperature	225 – 275	°C	
Mold Temperature	30 – 50	°C	
Back Pressure	0.3 – 0.7	MPa	
Screw Speed	20 – 100	rpm	
Shot to Cylinder Size	30 – 70	%	
Vent Depth	0.038 - 0.051	mm	

⁽¹⁾ The information stated on Technical Datasheets should be used as indicative only for material selection purposes and not be utilized as specification or used for part or tool design.

DISCLAIMER

Any sale by SABIC, its subsidiaries and affiliates (each a "seller"), is made exclusively under seller's standard conditions of sale (available upon request) unless agreed otherwise in writing and signed on behalf of the seller. While the information contained herein is given in good faith, SELLER MAKES NO WARRANTY, EXPRESS OR IMPLIED, INCLUDING MERCHANTABILITY AND NONINFRINGEMENT OF INTELLECTUAL PROPERTY, NOR ASSUMES ANY LIABILITY, DIRECT OR INDIRECT, WITH RESPECT TO THE PERFORMANCE, SUITABILITY OR FITNESS FOR INTENDED USE OR PURPOSE OF THESE PRODUCTS IN ANY APPLICATION. Each customer must determine the suitability of seller materials for the customer's particular use through appropriate testing and analysis. No statement by seller concerning a possible use of any product, service or design is intended, or should be construed, to grant any license under any patent or other intellectual property right.

⁽²⁾ Measurements made from laboratory test coupon. Actual shrinkage may vary outside of range due to differences in processing conditions, equipment, part geometry and tool design. It is recommended that mold shrinkage studies be performed with surrogate or legacy tooling prior to cutting tools for new molded article.

⁽³⁾ Injection Molding parameters are only mentioned as general guidelines. These may not apply or may need adjustment in specific situations such as low shot sizes, large part molding, thin wall molding and gas-assist molding.