

LNPTM COLORCOMPTM COMPOUND A1000F

DESCRIPTION

LNP COLORCOMP A1000F compound is based on unfilled Acrylonitrile Butadiene Styrene (ABS) resin. Added features of this grade include: Superior Molding.

GENERAL INFORMATION	
Features	Good Processability, Aesthetics/Visual effects, No PFAS intentionally added
Fillers	Unreinforced
Polymer Types	Acrylonitrile Butadiene Styrene (ABS)
Processing Techniques	Injection Molding

INDUSTRY	SUB INDUSTRY
Automotive	Automotive Interiors
Consumer	Home Decoration, Sport/Leisure, Personal Accessory, Home Appliances, Commercial Appliance
Electrical and Electronics	Mobile Phone - Computer - Tablets

TYPICAL PROPERTY VALUES

Revision 20231109

PROPERTIES	TYPICAL VALUES	UNITS	TEST METHODS
MECHANICAL ⁽¹⁾			
Tensile Stress, yield, 50 mm/min	47	MPa	ISO 527
Tensile Stress, break, 50 mm/min	35	MPa	ISO 527
Tensile Strain, yield, 50 mm/min	2.6	%	ISO 527
Tensile Strain, break, 50 mm/min	25	%	ISO 527
Tensile Modulus, 1 mm/min	2370	MPa	ISO 527
Flexural Stress, yield, 2 mm/min	70	MPa	ISO 178
Flexural Modulus, 2 mm/min	2200	MPa	ISO 178
Tensile Stress, yld, Type I, 5 mm/min	44	MPa	ASTM D638
Tensile Stress, brk, Type I, 5 mm/min	33	MPa	ASTM D638
Tensile Strain, yld, Type I, 5 mm/min	2	%	ASTM D638
Tensile Strain, brk, Type I, 5 mm/min	24	%	ASTM D638
Tensile Modulus, 5 mm/min	2270	MPa	ASTM D638
Flexural Stress, yld, 1.3 mm/min, 50 mm span	70	MPa	ASTM D790
Flexural Modulus, 1.3 mm/min, 50 mm span	2300	MPa	ASTM D790
Hardness, Rockwell R	112	-	ASTM D785
IMPACT ⁽¹⁾			
Izod Impact, notched 80*10*4 +23°C	22	kJ / m²	ISO 180/1A
Izod Impact, notched 80*10*4 -30°C	8	kJ / m²	ISO 180/1A
Charpy 23°C, V-notch Edgew 80*10*4 sp=62mm	26	kJ / m²	ISO 179/1eA
Charpy -30°C, V-notch Edgew 80*10*4 sp=62mm	9	kJ/m²	ISO 179/1eA
Izod Impact, notched, 23°C	320	J/m	ASTM D256
Instrumented Dart Impact Total Energy, 23°C	30	J	ASTM D3763

© 2024 Copyright by SABIC. All rights reserved

CHEMISTRY THAT MATTERS

PROPERTIES	TYPICAL VALUES	UNITS	TEST METHODS
THERMAL ⁽¹⁾			
HDT/Af, 1.8 MPa Flatw 80*10*4 sp=64mm	81	°C	ISO 75/Af
Vicat Softening Temp, Rate B/50	98	°C	ISO 306
Vicat Softening Temp, Rate B/120	100	°C	ISO 306
HDT, 0.45 MPa, 3.2 mm, unannealed	94	°C	ASTM D648
HDT, 1.82 MPa, 3.2mm, unannealed	80	°C	ASTM D648
CTE, -40°C to 40°C, flow	8.82E-05	1/°C	ASTM E831
CTE, -40°C to 40°C, xflow	8.82E-05	1/°C	ASTM E831
Vicat Softening Temp, Rate B/50	99	°C	ASTM D1525
Relative Temp Index, Elec ⁽²⁾	65	°C	UL 746B
Relative Temp Index, Mech w/impact ⁽²⁾	80	°C	UL 746B
Relative Temp Index, Mech w/o impact ⁽²⁾	65	°C	UL 746B
PHYSICAL ⁽¹⁾			
Density	1.04	g/cm ³	ISO 1183
Melt Flow Rate, 220°C/10.0 kg	18	g/10 min	ISO 1133
Specific Gravity	1.04	-	ASTM D792
Melt Flow Rate, 230°C/3.8 kg	5.6	g/10 min	ASTM D1238
Melt Viscosity, 240°C, 1000 sec-1	2250	Poise	ASTM D3825
Mold Shrinkage, flow, 3.2 mm ⁽³⁾	0.5 – 0.8	%	SABIC method
ELECTRICAL ⁽²⁾			
Comparative Tracking Index (UL) {PLC}	0	PLC Code	UL 746A
Hot-Wire Ignition (HWI), PLC 3	≥3	mm	UL 746A
Hot-Wire Ignition (HWI), PLC 4	≥1.5	mm	UL 746A
High Amp Arc Ignition (HAI), PLC 0	≥1.5	mm	UL 746A
High Voltage Arc Track Rate {PLC}	3	PLC Code	UL 746A
Arc Resistance, Tungsten {PLC}	6	PLC Code	ASTM D495
FLAME CHARACTERISTICS (2)			
UL Yellow Card Link	<u>E121562-103956404</u>	-	
UL Yellow Card Link 2	<u>E121562-103956406</u>	-	
UL Yellow Card Link 3	E207780-103938869	-	
UL Recognized, 94HB Flame Class Rating	≥1.5	mm	UL 94
INJECTION MOLDING (4)			
Drying Temperature	80 – 95	°C	
Drying Time	2 - 4	Hrs	
Drying Time (Cumulative)	8	Hrs	
Maximum Moisture Content	0.1	%	
Melt Temperature	220 – 260	°C	
Nozzle Temperature	220 – 260	°C	
Front - Zone 3 Temperature	215 – 240	°C	
Middle - Zone 2 Temperature	205 – 225	°C	
Rear - Zone 1 Temperature	190 – 210	°C	
Mold Temperature	50 – 70	°C	
Back Pressure	0.3 – 0.7	MPa	
Screw Speed	30 - 60	rpm	
Shot to Cylinder Size	50 – 70	%	

© 2024 Copyright by SABIC. All rights reserved

CHEMISTRY THAT MATTERS

PROPERTIES	TYPICAL VALUES	UNITS	TEST METHODS
Vent Depth	0.038 - 0.051	mm	

- (1) The information stated on Technical Datasheets should be used as indicative only for material selection purposes and not be utilized as specification or used for part or tool design.
- (2) UL Ratings shown on the technical datasheet might not cover the full range of thicknesses and colors. For details, please see the UL Yellow Card.
- (3) Measurements made from laboratory test coupon. Actual shrinkage may vary outside of range due to differences in processing conditions, equipment, part geometry and tool design. It is recommended that mold shrinkage studies be performed with surrogate or legacy tooling prior to cutting tools for new molded article.
- (4) Injection Molding parameters are only mentioned as general guidelines. These may not apply or may need adjustment in specific situations such as low shot sizes, large part molding, thin wall molding and gas-assist molding.

DISCLAIMER

Any sale by SABIC, its subsidiaries and affiliates (each a "seller"), is made exclusively under seller's standard conditions of sale (available upon request) unless agreed otherwise in writing and signed on behalf of the seller. While the information contained herein is given in good faith, SELLER MAKES NO WARRANTY, EXPRESS OR IMPLIED, INCLUDING MERCHANTABILITY AND NONINFRINGEMENT OF INTELLECTUAL PROPERTY, NOR ASSUMES ANY LIABILITY, DIRECT OR INDIRECT, WITH RESPECT TO THE PERFORMANCE, SUITABILITY OR FITNESS FOR INTENDED USE OR PURPOSE OF THESE PRODUCTS IN ANY APPLICATION. Each customer must determine the suitability of seller materials for the customer's particular use through appropriate testing and analysis. No statement by seller concerning a possible use of any product, service or design is intended, or should be construed, to grant any license under any patent or other intellectual property right.