

LNPTM STAT-KONTM COMPOUND MFD03

MF-15 REGION ASIA

DESCRIPTION

LNP STAT-KON MFD03 compound is based on Polypropylene (PP) resin containing conductive carbon powder and 15% glass fiber. Added features of this grade include: Electrically Conductive.

GENERAL INFORMATION	
Features	Electrically Conductive, High stiffness/Strength, No PFAS intentionally added
Fillers	Glass Fiber, Carbon Powder
Polymer Types	Polypropylene, Unspecified (PP, Unspecified)
Processing Techniques	Injection Molding

INDUSTRY	SUB INDUSTRY
Electrical and Electronics	Electronic Components
Industrial	Material Handling

TYPICAL PROPERTY VALUES

Revision 20231109

PROPERTIES	TYPICAL VALUES	UNITS	TEST METHODS
MECHANICAL (1)			
Tensile Stress, yield	34	MPa	ASTM D638
Tensile Stress, break	16	MPa	ASTM D638
Tensile Strain, yield	2.7	%	ASTM D638
Tensile Strain, break	6.9	%	ASTM D638
Tensile Modulus, 50 mm/min	3440	MPa	ASTM D638
Flexural Modulus	2750	MPa	ASTM D790
Tensile Stress, yield	34	MPa	ISO 527
Tensile Stress, break	15	MPa	ISO 527
Tensile Strain, yield	2.6	%	ISO 527
Tensile Strain, break	5.7	%	ISO 527
Tensile Modulus, 1 mm/min	3310	MPa	ISO 527
Flexural Stress	51	MPa	ISO 178
Flexural Modulus	3000	MPa	ISO 178
IMPACT (1)			
Izod Impact, unnotched, 23°C	138	J/m	ASTM D4812
Izod Impact, notched, 23°C	347	J/m	ASTM D256
Instrumented Dart Impact Energy @ peak, 23°C	13	J	ASTM D3763
Multiaxial Impact	5	J	ISO 6603
Izod Impact, unnotched 80*10*4 +23°C	20	kJ/m²	ISO 180/1U
Izod Impact, notched 80*10*4 +23°C	5	kJ/m²	ISO 180/1A
THERMAL (1)			

PROPERTIES	TYPICAL VALUES	UNITS	TEST METHODS
HDT, 0.45 MPa, 3.2 mm, unannealed	147	°C	ASTM D648
HDT, 1.82 MPa, 3.2mm, unannealed	106	°C	ASTM D648
CTE, -40°C to 40°C, flow	4.68E-05	1/°C	ASTM E831
CTE, -40°C to 40°C, xflow	1.04E-04	1/°C	ASTM E831
CTE, -40°C to 40°C, flow	4.70E-05	1/°C	ISO 11359-2
CTE, -40°C to 40°C, xflow	1.05E-04	1/°C	ISO 11359-2
HDT/Bf, 0.45 MPa Flatw 80*10*4 sp=64mm	145	°C	ISO 75/Bf
HDT/Af, 1.8 MPa Flatw 80*10*4 sp=64mm	105	°C	ISO 75/Af
PHYSICAL (1)			
Density	1.07	g/cm³	ASTM D792
Mold Shrinkage, flow, 24 hrs ⁽²⁾	1	%	ASTM D955
Mold Shrinkage, xflow, 24 hrs ⁽²⁾	0.9	%	ASTM D955
Mold Shrinkage, flow, 24 hrs ⁽²⁾	1	%	ISO 294
Mold Shrinkage, xflow, 24 hrs ⁽²⁾	0.92	%	ISO 294
Density	1.07	g/cm³	ISO 1183
INJECTION MOLDING (3)			
Drying Temperature	80	°C	
Drying Time	4	Hrs	
Melt Temperature	225 – 250	°C	
Front - Zone 3 Temperature	240 – 250	°C	
Middle - Zone 2 Temperature	215 – 225	°C	
Rear - Zone 1 Temperature	195 – 205	°C	
Mold Temperature	30 – 50	°C	
Back Pressure	0.2 – 0.3	MPa	
Screw Speed	30 - 60	rpm	

- (1) The information stated on Technical Datasheets should be used as indicative only for material selection purposes and not be utilized as specification or used for part or tool design.
- (2) Measurements made from laboratory test coupon. Actual shrinkage may vary outside of range due to differences in processing conditions, equipment, part geometry and tool design. It is recommended that mold shrinkage studies be performed with surrogate or legacy tooling prior to cutting tools for new molded article.
- (3) Injection Molding parameters are only mentioned as general guidelines. These may not apply or may need adjustment in specific situations such as low shot sizes, large part molding, thin wall molding and gas-assist molding.

DISCLAIMER

Any sale by SABIC, its subsidiaries and affiliates (each a "seller"), is made exclusively under seller's standard conditions of sale (available upon request) unless agreed otherwise in writing and signed on behalf of the seller. While the information contained herein is given in good faith, SELLER MAKES NO WARRANTY, EXPRESS OR IMPLIED, INCLUDING MERCHANTABILITY AND NONINFRINGEMENT OF INTELLECTUAL PROPERTY, NOR ASSUMES ANY LIABILITY, DIRECT OR INDIRECT, WITH RESPECT TO THE PERFORMANCE, SUITABILITY OR FITNESS FOR INTENDED USE OR PURPOSE OF THESE PRODUCTS IN ANY APPLICATION. Each customer must determine the suitability of seller materials for the customer's particular use through appropriate testing and analysis. No statement by seller concerning a possible use of any product, service or design is intended, or should be construed, to grant any license under any patent or other intellectual property right.