

LNPTM THERMOCOMPTM COMPOUND 9X02841

PDX-02841

DESCRIPTION

LNP THERMOCOMP 9X02841 compound is based on Polycarbonate / Polybutylene Terephthalate (PC/PBT) blend containing 15% glass fiber.

GENERAL INFORMATION	
Features	High stiffness/Strength, No PFAS intentionally added
Fillers	Glass Fiber
Polymer Types	Polycarbonate + PBT (PC+PBT)
Processing Techniques	Injection Molding
INDUSTRY	SUB INDUSTRY

Building Component

Electrical

TYPICAL PROPERTY VALUES

Building and Construction

Industrial

Revision 20231109

PROPERTIES	TYPICAL VALUES	UNITS	TEST METHODS
MECHANICAL (1)			
Tensile Stress, yld, Type I, 5 mm/min	83	MPa	ASTM D638
Tensile Stress, brk, Type I, 5 mm/min	83	MPa	ASTM D638
Tensile Strain, yld, Type I, 5 mm/min	2.7	%	ASTM D638
Tensile Strain, brk, Type I, 5 mm/min	2.7	%	ASTM D638
Tensile Modulus, 50 mm/min	5120	MPa	ASTM D638
Flexural Stress, yld, 1.3 mm/min, 50 mm span	127	MPa	ASTM D790
Flexural Stress, brk, 1.3 mm/min, 50 mm span	123	MPa	ASTM D790
Flexural Modulus, 1.3 mm/min, 50 mm span	4600	MPa	ASTM D790
Tensile Stress, yield, 5 mm/min	80	MPa	ISO 527
Tensile Stress, break, 5 mm/min	80	MPa	ISO 527
Tensile Strain, yield, 5 mm/min	2.6	%	ISO 527
Tensile Strain, break, 5 mm/min	2.6	%	ISO 527
Tensile Modulus, 1 mm/min	4880	MPa	ISO 527
Flexural Stress	115	MPa	ISO 178
Flexural Modulus, 2 mm/min	4480	MPa	ISO 178
IMPACT (1)			
Izod Impact, unnotched, 23°C	522	J/m	ASTM D4812
Izod Impact, notched, 23°C	78	J/m	ASTM D256
Multiaxial Impact	4	J	ISO 6603
Instrumented Dart Impact Total Energy, 23°C	16	J	ASTM D3763
Izod Impact, unnotched 80*10*4 +23°C	31	kJ/m²	ISO 180/1U
Izod Impact, notched 80*10*4 +23°C	7	kJ/m²	ISO 180/1A
THERMAL (1)			
		61.151	ALCEDY THAT NAATTEDO

PROPERTIES	TYPICAL VALUES	UNITS	TEST METHODS
PROPERTIES	TTFICAL VALUES	UNITS	TEST WETHODS
HDT, 0.45 MPa, 3.2 mm, unannealed	141	°C	ASTM D648
HDT, 1.82 MPa, 3.2mm, unannealed	115	°C	ASTM D648
CTE, -30°C to 30°C, flow	4.1E-05	1/°C	ASTM D696
CTE, -30°C to 30°C, xflow	6.3E-05	1/°C	ASTM D696
HDT/Bf, 0.45 MPa Flatw 80*10*4 sp=64mm	140	°C	ISO 75/Bf
HDT/Af, 1.8 MPa Flatw 80*10*4 sp=64mm	115	°C	ISO 75/Af
PHYSICAL (1)			
Density	1.33	g/cm³	ASTM D792
Moisture Absorption, (23°C/50% RH/24 hrs)	0.09	%	ASTM D570
Mold Shrinkage, flow, 24 hrs ⁽²⁾	0.4 – 0.6	%	ASTM D955
Mold Shrinkage, xflow, 24 hrs ⁽²⁾	0.6 - 0.8	%	ASTM D955
Density	1.33	g/cm³	ISO 1183
Moisture Absorption (23°C / 50% RH)	0.14	%	ISO 62
INJECTION MOLDING (3)			
Drying Temperature	120	°C	
Drying Time	4	Hrs	
Maximum Moisture Content	0.05	%	
Melt Temperature	240 – 265	°C	
Front - Zone 3 Temperature	260 – 270	°C	
Middle - Zone 2 Temperature	245 – 255	°C	
Rear - Zone 1 Temperature	220 – 230	°C	
Mold Temperature	80 – 100	°C	
Back Pressure	0.2 – 0.3	MPa	
Screw Speed	30 – 60	rpm	

⁽¹⁾ The information stated on Technical Datasheets should be used as indicative only for material selection purposes and not be utilized as specification or used for part or tool design.

DISCLAIMER

Any sale by SABIC, its subsidiaries and affiliates (each a "seller"), is made exclusively under seller's standard conditions of sale (available upon request) unless agreed otherwise in writing and signed on behalf of the seller. While the information contained herein is given in good faith, SELLER MAKES NO WARRANTY, EXPRESS OR IMPLIED, INCLUDING MERCHANTABILITY AND NONINFRINGEMENT OF INTELLECTUAL PROPERTY, NOR ASSUMES ANY LIABILITY, DIRECT OR INDIRECT, WITH RESPECT TO THE PERFORMANCE, SUITABILITY OR FITNESS FOR INTENDED USE OR PURPOSE OF THESE PRODUCTS IN ANY APPLICATION. Each customer must determine the suitability of seller materials for the customer's particular use through appropriate testing and analysis. No statement by seller concerning a possible use of any product, service or design is intended, or should be construed, to grant any license under any patent or other intellectual property right.

⁽²⁾ Measurements made from laboratory test coupon. Actual shrinkage may vary outside of range due to differences in processing conditions, equipment, part geometry and tool design. It is recommended that mold shrinkage studies be performed with surrogate or legacy tooling prior to cutting tools for new molded article.

⁽³⁾ Injection Molding parameters are only mentioned as general guidelines. These may not apply or may need adjustment in specific situations such as low shot sizes, large part molding, thin wall molding and gas-assist molding.