

NORYL GTX™ RESIN GTX918W

REGION EUROPE

DESCRIPTION

NORYL GTX918W resin is a non-reinforced alloy of Polyphenylene Ether (PPE) + Polyamide (PA). This injection moldable grade exhibits high heat resistance, excellent chemical resistance, and high melt flow. NORYL GTX918W resin may be an excellent candidate for automotive under-the-hood and electrical applications requiring the retention of properties while under thermal load.

GENERAL INFORMATION

Features	Chemical Resistance, Hydrolytic Stability, Low Warpage, Low Shrinkage, Low Moisture Absorption, Low Specific Gravity, Dimensional stability, High stiffness/Strength, High temperature resistance, Impact resistant, No PFAS intentionally added
Fillers	Unreinforced
Polymer Types	Polyphenylene Ether + PA (PPE+Nylon)
Processing Techniques	Injection Molding

INDUSTRY	SUB INDUSTRY
Automotive	Automotive Under the Hood
Electrical and Electronics	Electronic Components, Lighting
Industrial	Electrical

TYPICAL PROPERTY VALUES

PROPERTIES TYPICAL VALUES UNITS **TEST METHODS** MECHANICAL⁽¹⁾ Tensile Stress, yield, 50 mm/min 60 MPa ISO 527 Tensile Stress, break, 50 mm/min 55 MPa ISO 527 4.5 Tensile Strain, yield, 50 mm/min % ISO 527 Tensile Strain, break, 50 mm/min 30 % ISO 527 Tensile Modulus, 1 mm/min 2400 MPa ISO 527 Flexural Stress, yield, 2 mm/min 85 ISO 178 MPa Flexural Modulus, 2 mm/min 2200 MPa ISO 178 Ball Indentation Hardness, H358/30 95 MPa ISO 2039-1 IMPACT (1) Izod Impact, notched 80*10*4 +23°C 20 ISO 180/1A kJ/m² Izod Impact, notched 80*10*4 -30°C 10 kJ/m² ISO 180/1A Charpy 23°C, V-notch Edgew 80*10*4 sp=62mm 20 kJ/m² ISO 179/1eA Charpy -30°C, V-notch Edgew 80*10*4 sp=62mm 10 kJ/m² ISO 179/1eA THERMAL (1) Thermal Conductivity 0.25 ISO 8302 W/m-°C CTE, 23°C to 60°C, flow 8.E-05 1/°C ISO 11359-2 CTE, 23°C to 60°C, xflow 8.E-05 1/°C ISO 11359-2 Ball Pressure Test, 125°C +/- 2°C PASSES IEC 60695-10-2 Vicat Softening Temp, Rate A/50 °C ISO 306 245

© 2024 Copyright by SABIC. All rights reserved

CHEMISTRY THAT MATTERS

Revision 20241015

PROPERTIES	TYPICAL VALUES	UNITS	TEST METHODS
Vicat Softening Temp, Rate B/50	190	°C	ISO 306
Vicat Softening Temp, Rate B/120	195	°C	ISO 306
HDT/Be, 0.45MPa Edgew 120*10*4 sp=100mm	185	°C	ISO 75/Be
Relative Temp Index, Elec ⁽²⁾	120	°C	UL 746B
Relative Temp Index, Mech w/impact ⁽²⁾	110	°C	UL 746B
Relative Temp Index, Mech w/o impact ⁽²⁾	125	°C	UL 746B
PHYSICAL ⁽¹⁾			
Mold Shrinkage on Tensile Bar, flow (3)	1.6 – 2	%	SABIC method
Density	1.1	g/cm³	ISO 1183
Water Absorption, (23°C/saturated)	4.2	%	ISO 62-1
Moisture Absorption (23°C / 50% RH)	1.34	%	ISO 62
Melt Volume Rate, MVR at 280°C/1.2 kg	5	cm³/10 min	ISO 1133
FLAME CHARACTERISTICS (2)			
UL Yellow Card Link	E45329-236572	-	-
UL Recognized, 94HB Flame Class Rating	≥1.5	mm	UL 94
INJECTION MOLDING ⁽⁴⁾			
Drying Temperature	100 – 120	°C	
Drying Time	2 – 3	Hrs	
Maximum Moisture Content	0.07	%	
Melt Temperature	280 - 310	°C	
Nozzle Temperature	270 – 300	°C	
Front - Zone 3 Temperature	280 – 300	°C	
Middle - Zone 2 Temperature	270 – 290	°C	
Rear - Zone 1 Temperature	260 – 280	°C	
Hopper Temperature	60 - 80	°C	
Mold Temperature	80 – 120	°C	

(1) The information stated on Technical Datasheets should be used as indicative only for material selection purposes and not be utilized as specification or used for part or tool design.

(2) UL Ratings shown on the technical datasheet might not cover the full range of thicknesses and colors. For details, please see the UL Yellow Card.

(3) Measurements made from laboratory test coupon. Actual shrinkage may vary outside of range due to differences in processing conditions, equipment, part geometry and tool design. It is recommended that mold shrinkage studies be performed with surrogate or legacy tooling prior to cutting tools for new molded article.

(4) Injection Molding parameters are only mentioned as general guidelines. These may not apply or may need adjustment in specific situations such as low shot sizes, large part molding, thin wall molding and gas-assist molding.

DISCLAIMER

Any sale by SABIC, its subsidiaries and affiliates (each a "seller"), is made exclusively under seller's standard conditions of sale (available upon request) unless agreed otherwise in writing and signed on behalf of the seller. While the information contained herein is given in good faith, SELLER MAKES NO WARRANTY, EXPRESS OR IMPLIED, INCLUDING MERCHANTABILITY AND NONINFRINGEMENT OF INTELLECTUAL PROPERTY, NOR ASSUMES ANY LIABILITY, DIRECT OR INDIRECT, WITH RESPECT TO THE PERFORMANCE, SUITABILITY OR FITNESS FOR INTENDED USE OR PURPOSE OF THESE PRODUCTS IN ANY APPLICATION. Each customer must determine the suitability of seller materials for the customer's particular use through appropriate testing and analysis. No statement by seller concerning a possible use of any product, service or design is intended, or should be construed, to grant any license under any patent or other intellectual property right.