

LEXANTM COPOLYMER 4501

REGION AMERICAS

DESCRIPTION

High heat resistant polyphthalate carbonate, provides DTUL of 290F at 264 psi.

TYPICAL PROPERTY VALUES

Revision 20231109

PROPERTIES	TYPICAL VALUES	UNITS	TEST METHODS
MECHANICAL (1)			
Tensile Stress, yld, Type I, 50 mm/min	65	MPa	ASTM D638
Tensile Stress, brk, Type I, 50 mm/min	71	MPa	ASTM D638
Tensile Strain, brk, Type I, 50 mm/min	122	%	ASTM D638
Flexural Stress, yld, 1.3 mm/min, 50 mm span	95	MPa	ASTM D790
Flexural Modulus, 1.3 mm/min, 50 mm span	2020	MPa	ASTM D790
Hardness, Rockwell M	85	-	ASTM D785
Hardness, Rockwell R	122	-	ASTM D785
IMPACT (1)			
Izod Impact, unnotched, 23°C	3204	J/m	ASTM D4812
Izod Impact, notched, 23°C	640	J/m	ASTM D256
Tensile Impact Strength, Type S	577	kJ/m²	ASTM D1822
Falling Dart Impact (D 3029), 23°C	149	J	ASTM D3029
THERMAL (1)			
HDT, 1.82 MPa, 3.2mm, unannealed	143	°C	ASTM D648
CTE, -40°C to 95°C, flow	9.18E-05	1/°C	ASTM E831
Specific Heat	1.25	J/g-°C	ASTM C351
Thermal Conductivity	0.21	W/m-°C	ASTM C177
Relative Temp Index, Elec ⁽²⁾	125	°C	UL 746B
Relative Temp Index, Mech w/impact ⁽²⁾	125	°C	UL 746B
Relative Temp Index, Mech w/o impact (2)	125	°C	UL 746B
PHYSICAL (1)			
Specific Gravity	1.2		ASTM D792
Specific Volume	0.83	cm³/g	ASTM D792
Density	1.19	g/cm³	ASTM D792
Water Absorption, (23°C/24hrs)	0.16	%	ASTM D570
Mold Shrinkage, flow, 3.2 mm ⁽³⁾	0.7 - 0.8	%	SABIC method
Melt Flow Rate, 300°C/1.2 kgf	3	g/10 min	ASTM D1238
OPTICAL (1)			
Light Transmission, 2.54 mm	85	%	ASTM D1003
Haze, 2.54 mm	1	%	ASTM D1003
Refractive Index	1.6	-	ASTM D542
ELECTRICAL (1)			
Volume Resistivity	>2.6E+16	Ω.cm	ASTM D257
Dielectric Strength, in air, 3.2 mm	20.2	kV/mm	ASTM D149

PROPERTIES	TYPICAL VALUES	UNITS	TEST METHODS
Relative Permittivity, 50/60 Hz	3.15	-	ASTM D150
Relative Permittivity, 1 MHz	3	-	ASTM D150
Dissipation Factor, 50/60 Hz	0.0012	-	ASTM D150
Dissipation Factor, 100 Hz	0.024	-	ASTM D150
Comparative Tracking Index (UL) {PLC}	3	PLC Code	UL 746A
Hot-Wire Ignition (HWI), PLC 1	≥6	mm	UL 746A
Hot-Wire Ignition (HWI), PLC 2	≥3	mm	UL 746A
Hot-Wire Ignition (HWI), PLC 3	≥1.5	mm	UL 746A
High Amp Arc Ignition (HAI), PLC 4	≥1.5	mm	UL 746A
High Voltage Arc Track Rate {PLC}	3	PLC Code	UL 746A
FLAME CHARACTERISTICS (2)			
UL Yellow Card Link	E121562-220884	-	
UL Recognized, 94V-2 Flame Class Rating	≥1.5	mm	UL 94
INJECTION MOLDING (4)			
Drying Temperature	120	°C	
Drying Time	3 – 4	Hrs	
Drying Time (Cumulative)	48	Hrs	
Maximum Moisture Content	0.02	%	
Melt Temperature	340 – 360	°C	
Nozzle Temperature	330 – 355	°C	
Front - Zone 3 Temperature	340 – 360	°C	
Middle - Zone 2 Temperature	325 – 350	°C	
Rear - Zone 1 Temperature	315 – 340	°C	
Mold Temperature	80 – 115	°C	
Back Pressure	0.3 – 0.7	MPa	
Screw Speed	40 – 70	rpm	
Shot to Cylinder Size	40 – 60	%	
Vent Depth	0.025 - 0.076	mm	

- (1) The information stated on Technical Datasheets should be used as indicative only for material selection purposes and not be utilized as specification or used for part or tool design.
- (2) UL Ratings shown on the technical datasheet might not cover the full range of thicknesses and colors. For details, please see the UL Yellow Card.
- (3) Measurements made from laboratory test coupon. Actual shrinkage may vary outside of range due to differences in processing conditions, equipment, part geometry and tool design. It is recommended that mold shrinkage studies be performed with surrogate or legacy tooling prior to cutting tools for new molded article.,The information stated on Technical Datasheets should be used as indicative only for material selection purposes and not be utilized as specification or used for part or tool design.
- (4) Injection Molding parameters are only mentioned as general guidelines. These may not apply or may need adjustment in specific situations such as low shot sizes, large part molding, thin wall molding and gas-assist molding.

DISCLAIMER

Any sale by SABIC, its subsidiaries and affiliates (each a "seller"), is made exclusively under seller's standard conditions of sale (available upon request) unless agreed otherwise in writing and signed on behalf of the seller. While the information contained herein is given in good faith, SELLER MAKES NO WARRANTY, EXPRESS OR IMPLIED, INCLUDING MERCHANTABILITY AND NONINFRINGEMENT OF INTELLECTUAL PROPERTY, NOR ASSUMES ANY LIABILITY, DIRECT OR INDIRECT, WITH RESPECT TO THE PERFORMANCE, SUITABILITY OR FITNESS FOR INTENDED USE OR PURPOSE OF THESE PRODUCTS IN ANY APPLICATION. Each customer must determine the suitability of seller materials for the customer's particular use through appropriate testing and analysis. No statement by seller concerning a possible use of any product, service or design is intended, or should be construed, to grant any license under any patent or other intellectual property right.