

NORYL GTX™ RESIN GTX975

REGION EUROPE

DESCRIPTION

NORYL GTX975 resin is a conductive, 18% mineral reinforced alloy of Polyphenylene Ether (PPE) + Polyamide (PA). This injection moldable grade combines high stiffness and excellent temperature resistance with conductivity for primerless electrostatic painting. NORYL GTX975 was designed for in- or on-line painted exterior automotive trim parts such as tank flaps and corner panels.

GENERAL INFORMATION	
Features	Chemical Resistance, Electrically Conductive, Hydrolytic Stability, Low Warpage, Low Shrinkage, Low Moisture Absorption, Low Specific Gravity, Aesthetics/Visual effects, Dimensional stability, High stiffness/Strength, High temperature resistance, Impact resistant, No PFAS intentionally added
Fillers	Conductive agent
Polymer Types	Polyphenylene Ether + PA (PPE+Nylon)
Processing Techniques	Injection Molding

INDUSTRY	SUB INDUSTRY	
Automotive	Automotive Exteriors	

Automotive Automotive Exteriors

TYPICAL PROPERTY VALUES

Revision 20231109

PROPERTIES	TYPICAL VALUES	UNITS	TEST METHODS
MECHANICAL (1)			
Tensile Stress, break, 5 mm/min	65	MPa	ISO 527
Tensile Strain, break, 5 mm/min	4	%	ISO 527
Tensile Modulus, 1 mm/min	4200	MPa	ISO 527
Flexural Stress, break, 2 mm/min	110	MPa	ISO 178
Flexural Modulus, 2 mm/min	4000	MPa	ISO 178
Ball Indentation Hardness, H358/30	125	MPa	ISO 2039-1
IMPACT (1)			
Izod Impact, unnotched 80*10*4 +23°C	40	kJ/m²	ISO 180/1U
Izod Impact, unnotched 80*10*4 -30°C	35	kJ/m²	ISO 180/1U
Izod Impact, notched 80*10*4 +23°C	4	kJ/m²	ISO 180/1A
Izod Impact, notched 80*10*4 -30°C	4	kJ/m²	ISO 180/1A
Charpy 23°C, V-notch Edgew 80*10*4 sp=62mm	3	kJ/m²	ISO 179/1eA
Charpy -30°C, V-notch Edgew 80*10*4 sp=62mm	3	kJ/m²	ISO 179/1eA
Charpy 23°C, Unnotch Edgew 80*10*4 sp=62mm	40	kJ/m²	ISO 179/1eU
Charpy -30°C, Unnotch Edgew 80*10*4 sp=62mm	35	kJ/m²	ISO 179/1eU
THERMAL (1)			
CTE, 23°C to 60°C, flow	5.E-05	1/°C	ISO 11359-2
CTE, 23°C to 60°C, xflow	6.5E-05	1/°C	ISO 11359-2
Vicat Softening Temp, Rate B/50	195	°C	ISO 306
Vicat Softening Temp, Rate B/120	200	°C	ISO 306
HDT/Be, 0.45MPa Edgew 120*10*4 sp=100mm	185	°C	ISO 75/Be

PROPERTIES	TYPICAL VALUES	UNITS	TEST METHODS
PHYSICAL (1)			
Mold Shrinkage on Tensile Bar, flow ⁽²⁾	1.1 – 1.3	%	SABIC method
Density	1.2	g/cm³	ISO 1183
Melt Volume Rate, MVR at 280°C/5.0 kg	10	cm³/10 min	ISO 1133
ELECTRICAL (1)			
Volume Resistivity	1.E+03 – 1.E+04	Ω.cm	SABIC method
INJECTION MOLDING (3)			
Drying Temperature	100 – 110	°C	
Drying Time	2 – 3	Hrs	
Maximum Moisture Content	0.02	%	
Melt Temperature	280 – 300	°C	
Nozzle Temperature	270 – 290	°C	
Front - Zone 3 Temperature	280 – 300	°C	
Middle - Zone 2 Temperature	270 – 290	°C	
Rear - Zone 1 Temperature	260 – 280	°C	
Hopper Temperature	80 – 100	°C	
Mold Temperature	100 – 120	°C	

- (1) The information stated on Technical Datasheets should be used as indicative only for material selection purposes and not be utilized as specification or used for part or tool design.
- (2) Measurements made from laboratory test coupon. Actual shrinkage may vary outside of range due to differences in processing conditions, equipment, part geometry and tool design. It is recommended that mold shrinkage studies be performed with surrogate or legacy tooling prior to cutting tools for new molded article.
- (3) Injection Molding parameters are only mentioned as general guidelines. These may not apply or may need adjustment in specific situations such as low shot sizes, large part molding, thin wall molding and gas-assist molding.

DISCLAIMER

Any sale by SABIC, its subsidiaries and affiliates (each a "seller"), is made exclusively under seller's standard conditions of sale (available upon request) unless agreed otherwise in writing and signed on behalf of the seller. While the information contained herein is given in good faith, SELLER MAKES NO WARRANTY, EXPRESS OR IMPLIED, INCLUDING MERCHANTABILITY AND NONINFRINGEMENT OF INTELLECTUAL PROPERTY, NOR ASSUMES ANY LIABILITY, DIRECT OR INDIRECT, WITH RESPECT TO THE PERFORMANCE, SUITABILITY OR FITNESS FOR INTENDED USE OR PURPOSE OF THESE PRODUCTS IN ANY APPLICATION. Each customer must determine the suitability of seller materials for the customer's particular use through appropriate testing and analysis. No statement by seller concerning a possible use of any product, service or design is intended, or should be construed, to grant any license under any patent or other intellectual property right.