LNPTM ELCRINTM 610009UXiQ ## **DESCRIPTION** LNP ELCRIN 610009UXiQ compound is based on Polycarbonate / Polybutylene Terephthalate (PC/PBT) blend, utilizing ELCRIN iQ upcycling technology containing minimum 19% Post-Consumer Recycling (PCR) weight content. Added features of this grade include: Flame Retardant, UL746C F1 Rating, UL94 VO and 5VA Flame Rating, UV Resistant, Impact Modified, Excellent Chemical Resistance. This is a good candidate for applications in the electrical industry including bobbins, switches, and enclosures. | GENERAL INFORMATION | | |-----------------------|--| | Features | Flame Retardant, UV Resistant, Post-Consumer Recycled (PCR) content, Impact Modified | | Fillers | Unreinforced | | Polymer Types | Polycarbonate + PBT (PC+PBT) | | Processing Techniques | Injection Molding, Extrusion | | INDUSTRY | SUB INDUSTRY | |----------------------------|---| | Automotive | Automotive Interiors | | Consumer | Sport/Leisure, Personal Accessory, Commercial Appliance | | Electrical and Electronics | Electrical Devices and Displays | ## **TYPICAL PROPERTY VALUES** Revision 20210716 | PROPERTIES | TYPICAL VALUES | UNITS | TEST METHODS | |--|----------------|-------|--------------| | MECHANICAL (1) | | | | | Tensile Stress, yld, Type I, 50 mm/min | 48 | MPa | ASTM D638 | | Tensile Stress, brk, Type I, 50 mm/min | 41 | MPa | ASTM D638 | | Tensile Strain, yld, Type I, 50 mm/min | 4.9 | % | ASTM D638 | | Tensile Strain, brk, Type I, 50 mm/min | 74 | % | ASTM D638 | | Tensile Modulus, 5 mm/min | 2000 | MPa | ASTM D638 | | Flexural Stress, yld, 1.3 mm/min, 50 mm span | 75 | MPa | ASTM D790 | | Flexural Modulus, 1.3 mm/min, 50 mm span | 2100 | MPa | ASTM D790 | | Tensile Stress, yield, 50 mm/min | 48 | MPa | ISO 527 | | Tensile Stress, break, 50 mm/min | 40 | MPa | ISO 527 | | Tensile Strain, yield, 50 mm/min | 4.6 | % | ISO 527 | | Tensile Strain, break, 50 mm/min | 74.8 | % | ISO 527 | | Tensile Modulus, 1 mm/min | 2190 | MPa | ISO 527 | | Flexural Stress, yield, 2 mm/min | 73 | MPa | ISO 178 | | Flexural Modulus, 2 mm/min | 2050 | MPa | ISO 178 | | IMPACT (1) | | | | | Izod Impact, notched, 23°C | 490 | J/m | ASTM D256 | | Izod Impact, notched, -30°C | 167 | J/m | ASTM D256 | | Instrumented Dart Impact Total Energy, 23°C | 50 | I, | ASTM D3763 | | Izod Impact, notched 80*10*4 +23°C | 31 | kJ/m² | ISO 180/1A | | Izod Impact, notched 80*10*4 -30°C | 10 | kJ/m² | ISO 180/1A | | PROPERTIES | TYPICAL VALUES | UNITS | TEST METHODS | |--|--------------------|-------------------------|--------------| | Charpy 23°C, V-notch Edgew 80*10*4 sp=62mm | 34 | kJ/m² | ISO 179/1eA | | THERMAL (1) | | , | , | | HDT, 1.82 MPa, 6.4 mm, unannealed | 95 | °C | ASTM D648 | | HDT, 0.45 MPa, 3.2 mm, unannealed | 127 | °C | ASTM D648 | | CTE, -40°C to 40°C, flow | 8.16E-05 | 1/°C | ASTM E831 | | CTE, -40°C to 40°C, xflow | 9.74E-05 | 1/°C | ASTM E831 | | CTE, -40°C to 40°C, flow | 8.16E-05 | 1/°C | ISO 11359-2 | | CTE, -40°C to 40°C, xflow | 9.74E-05 | 1/°C | ISO 11359-2 | | HDT/Bf, 0.45 MPa Flatw 80*10*4 sp=64mm | 122 | °C | ISO 75/Bf | | Relative Temp Index, Elec (2) | 120 | °C | UL 746B | | Relative Temp Index, Mech w/impact (2) | 120 | °C | UL 746B | | Relative Temp Index, Mech w/o impact (2) | 140 | °C | UL 746B | | PHYSICAL (1) | | | | | Specific Gravity | 1.35 | - | ASTM D792 | | Mold Shrinkage, flow, 3.2 mm ⁽³⁾ | 1.1 – 1.4 | % | SABIC method | | Melt Flow Rate, 250°C/5.0 kgf | 9.3 | g/10 min | ASTM D1238 | | Density | 1.34 | g/cm³ | ISO 1183 | | Water Absorption, (23°C/saturated) | 0.08 | % | ISO 62-1 | | Moisture Absorption (23°C / 50% RH) | 0.08 | % | ISO 62 | | Melt Volume Rate, MVR at 250°C/5.0 kg | 7 | cm ³ /10 min | ISO 1133 | | ELECTRICAL (2) | | c , re | 150 1155 | | | 2 | PLC Code | UL 746A | | Comparative Tracking Index (UL) {PLC} Arc Resistance, Tungsten {PLC} | 6 | PLC Code | ASTM D495 | | High Voltage Arc Track Rate {PLC} | 4 | PLC Code | UL 746A | | Hot-Wire Ignition (HWI), PLC 2 | 1
≥3 | mm | UL 746A | | Hot-Wire Ignition (HWI), PLC 3 | ≥0.63 | mm | UL 746A | | Hot-Wire Ignition (HWI), PLC 4 | ≥0.46 | mm | UL 746A | | High Amp Arc Ignition (HAI), PLC 3 | ≥1.5 | mm | UL 746A | | High Amp Arc Ignition (HAI), PLC 4 | ≥0.46 | mm | UL 746A | | FLAME CHARACTERISTICS (2) | | | 0211071 | | UL Yellow Card Link | E121562-104207620 | | | | | | | | | UL Yellow Card Link 2 | E121562-104207621 | - | - | | UL Yellow Card Link 3 | E207780-104244704 | - | - | | UL Yellow Card Link 4 | E207780-104244705 | - | - | | UL Yellow Card Link 5 | E45329-104207638 | - | | | UL Recognized, 94-5VA Flame Class Rating | ≥2.5 | mm | UL 94 | | UL Recognized, 94V-0 Flame Class Rating | ≥0.63 | mm | UL 94 | | UL Recognized, 94HB Flame Class Rating | 0.46 | mm | UL 94 | | UV-light, water exposure/immersion | F1 | - | UL 746C | | INJECTION MOLDING (4) | | | | | Drying Temperature | 120 | °C | | | Drying Time | 3 – 4 | Hrs | | | | 12 | Hrs | | | Drying Time (Cumulative) | 12 | 1113 | | | PROPERTIES | TYPICAL VALUES | UNITS | TEST METHODS | |-----------------------------|----------------|-------|--------------| | Melt Temperature | 250 – 265 | °C | | | Nozzle Temperature | 245 – 260 | °C | | | Front - Zone 3 Temperature | 250 – 265 | °C | | | Middle - Zone 2 Temperature | 245 – 260 | °C | | | Rear - Zone 1 Temperature | 240 – 255 | °C | | | Mold Temperature | 50 – 75 | °C | | | Back Pressure | 0.3 – 0.7 | MPa | | | Screw Speed | 50 – 100 | rpm | | | Shot to Cylinder Size | 40 – 80 | % | | | Vent Depth | 0.025 - 0.038 | mm | | - (1) The information stated on Technical Datasheets should be used as indicative only for material selection purposes and not be utilized as specification or used for part or tool design. - (2) UL Ratings shown on the technical datasheet might not cover the full range of thicknesses and colors. For details, please see the UL Yellow Card. - (3) Measurements made from laboratory test coupon. Actual shrinkage may vary outside of range due to differences in processing conditions, equipment, part geometry and tool design. It is recommended that mold shrinkage studies be performed with surrogate or legacy tooling prior to cutting tools for new molded article. - (4) Injection Molding parameters are only mentioned as general guidelines. These may not apply or may need adjustment in specific situations such as low shot sizes, large part molding, thin wall molding and gas-assist molding. ## **DISCLAIMER** Any sale by SABIC, its subsidiaries and affiliates (each a "seller"), is made exclusively under seller's standard conditions of sale (available upon request) unless agreed otherwise in writing and signed on behalf of the seller. While the information contained herein is given in good faith, SELLER MAKES NO WARRANTY, EXPRESS OR IMPLIED, INCLUDING MERCHANTABILITY AND NONINFRINGEMENT OF INTELLECTUAL PROPERTY, NOR ASSUMES ANY LIABILITY, DIRECT OR INDIRECT, WITH RESPECT TO THE PERFORMANCE, SUITABILITY OR FITNESS FOR INTENDED USE OR PURPOSE OF THESE PRODUCTS IN ANY APPLICATION. Each customer must determine the suitability of seller materials for the customer's particular use through appropriate testing and analysis. No statement by seller concerning a possible use of any product, service or design is intended, or should be construed, to grant any license under any patent or other intellectual property right.