

Revision 20231109

ULTEMTM RESIN AUT200G4

DESCRIPTION

20% Glass fiber filled, enhanced flow Polyetherimide (Tg 217C).

Automotive

Automotive Under the Hood

TYPICAL PROPERTY VALUES

PROPERTIES TYPICAL VALUES UNITS TEST METHODS MECHANICAL⁽¹⁾ Tensile Stress, brk, Type I, 5 mm/min 139 MPa ASTM D638 Tensile Strain, brk, Type I, 5 mm/min 4 ASTM D638 % Tensile Modulus, 5 mm/min 6890 MPa ASTM D638 Flexural Stress, brk, 2.6 mm/min, 100 mm span 227 MPa ASTM D790 Flexural Modulus, 2.6 mm/min, 100 mm span 6890 MPa ASTM D790 Taber Abrasion, CS-17, 1 kg 17 mg/1000cy SABIC method Tensile Stress, break, 5 mm/min 140 MPa ISO 527 Tensile Strain, break, 5 mm/min 2 150 527 % Tensile Modulus, 1 mm/min 6800 MPa ISO 527 Flexural Stress, break, 2 mm/min 210 MPa ISO 178 Flexural Modulus, 2 mm/min 6500 MPa ISO 178 Ball Indentation Hardness, H358/30 150 MPa ISO 2039-1 IMPACT (1) Izod Impact, unnotched, 23°C ASTM D4812 475 J/m Izod Impact, notched, 23°C 64 J/m ASTM D256 453 ASTM D256 Izod Impact, Reverse Notched, 3.2 mm J/m Izod Impact, unnotched 80*10*4 +23°C 30 kJ/m² ISO 180/1U Izod Impact, unnotched 80*10*4 -30°C ISO 180/1U 30 kJ/m² Charpy Impact, notched, 23°C 9 kJ/m² ISO 179/2C Charpy 23°C, Unnotch Edgew 80*10*4 sp=62mm 35 ISO 179/1eU kJ/m² Charpy -30°C, Unnotch Edgew 80*10*4 sp=62mm ISO 179/1eU 35 kJ/m² THERMAL (1) °C Vicat Softening Temp, Rate B/50 225 ASTM D1525 HDT, 0.45 MPa, 6.4 mm, unannealed °C 210 ASTM D648 °C HDT, 1.82 MPa, 6.4 mm, unannealed 211 ASTM D648 Thermal Conductivity 0.28 W/m-°C 150 8302 1/°C CTE, -40°C to 150°C, flow 2.1E-05 ISO 11359-2 CTE, -40°C to 150°C, xflow 4.9E-05 1/°C ISO 11359-2 °C ISO 306 Vicat Softening Temp, Rate A/50 223 °C Vicat Softening Temp, Rate B/50 212 ISO 306 Vicat Softening Temp, Rate B/120 218 °C ISO 306 °C HDT/Be, 0.45MPa Edgew 120*10*4 sp=100mm 210 ISO 75/Be

© 2024 Copyright by SABIC. All rights reserved

CHEMISTRY THAT MATTERS

PROPERTIES	TYPICAL VALUES	UNITS	TEST METHODS
HDT/Ae, 1.8 MPa Edgew 120*10*4 sp=100mm	205	°C	ISO 75/Ae
Relative Temp Index, Mech w/impact ⁽²⁾	170	°C	UL 746B
Relative Temp Index, Mech w/o impact ⁽²⁾	170	°C	UL 746B
PHYSICAL (1)			
Specific Gravity	1.42		ASTM D792
Melt Flow Rate, 337°C/6.6 kgf	8.4	g/10 min	ASTM D1238
Mold Shrinkage on Tensile Bar, flow (3)	0.3 – 0.5	%	SABIC method
Density	1.42	g/cm ³	ISO 1183
Water Absorption, (23°C/saturated)	1	%	ISO 62-1
Moisture Absorption (23°C / 50% RH)	0.55	%	ISO 62
Melt Volume Rate, MVR at 360°C/5.0 kg	10	cm³/10 min	ISO 1133
ELECTRICAL ⁽¹⁾			
Volume Resistivity	1.E+15	Ω.cm	IEC 60093
Surface Resistivity, ROA	>1.E+15	Ω	IEC 60093
Dielectric Strength, in oil, 0.8 mm	34	kV/mm	IEC 60243-1
Dielectric Strength, in oil, 1.6 mm	26	kV/mm	IEC 60243-1
Dielectric Strength, in oil, 3.2 mm	16	kV/mm	IEC 60243-1
Relative Permittivity, 1 MHz	3	-	IEC 60250
Dissipation Factor, 1 MHz	0.0025	-	IEC 60250
Relative Permittivity, 50/60 Hz	3.1	-	IEC 60250
Dissipation Factor, 50/60 Hz	0.0008	-	IEC 60250
Comparative Tracking Index ⁽⁴⁾	150	V	IEC 60112
INJECTION MOLDING ⁽⁵⁾			
Drying Temperature	150	°C	
Drying Time	4 - 6	Hrs	
Maximum Moisture Content	0.02	%	
Melt Temperature	370 – 410	°C	
Nozzle Temperature	360 – 410	°C	
Front - Zone 3 Temperature	370 – 420	°C	
Middle - Zone 2 Temperature	360 - 410	°C	
Rear - Zone 1 Temperature	350 – 400	°C	
Hopper Temperature	80 – 120	°C	
Mold Temperature	140 - 180	°C	

(1) The information stated on Technical Datasheets should be used as indicative only for material selection purposes and not be utilized as specification or used for part or tool design.

(2) RTI for this grade is not measured and is based on grades with similar formulation ad performance.

(3) Measurements made from laboratory test coupon. Actual shrinkage may vary outside of range due to differences in processing conditions, equipment, part geometry and tool design. It is recommended that mold shrinkage studies be performed with surrogate or legacy tooling prior to cutting tools for new molded article.

(4) Value shown here is based on internal measurement.

(5) Injection Molding parameters are only mentioned as general guidelines. These may not apply or may need adjustment in specific situations such as low shot sizes, large part molding, thin wall molding and gas-assist molding.

DISCLAIMER

Any sale by SABIC, its subsidiaries and affiliates (each a "seller"), is made exclusively under seller's standard conditions of sale (available upon request) unless agreed otherwise in writing and signed on behalf of the seller. While the information contained herein is given in good faith, SELLER MAKES NO WARRANTY, EXPRESS OR IMPLIED, INCLUDING MERCHANTABILITY AND NONINFRINGEMENT OF INTELLECTUAL PROPERTY, NOR ASSUMES ANY LIABILITY, DIRECT OR INDIRECT, WITH RESPECT TO THE PERFORMANCE, SUITABILITY OR FITNESS FOR INTENDED USE OR PURPOSE OF THESE PRODUCTS IN ANY APPLICATION. Each customer must determine the suitability of seller materials for the customer's particular use through appropriate testing and analysis. No statement by seller concerning a possible use of any product, service or design is intended, or should be construed, to grant any license under any patent or other intellectual property right.