

LEXANTM COPOLYMER EXL1444

REGION EUROPE

DESCRIPTION

LEXAN EXL1444 is based on Polycarbonate (PC) siloxane copolymer resin. It is a medium flow, FDA compliant and opaque injection molding (IM) grade. This resin offers extreme low temperature (-40°C) ductility, exhibits excellent processability and release with opportunities for shorter IM cycle times compared to standard PC. This product is available in a wide range of opaque colors.

TYPICAL PROPERTY VALUES

Revision 20230607

PROPERTIES	TYPICAL VALUES	UNITS	TEST METHODS
MECHANICAL (1)			
Tensile Stress, yld, Type I, 50 mm/min	55	MPa	ASTM D638
Tensile Stress, brk, Type I, 50 mm/min	50	MPa	ASTM D638
Tensile Strain, yld, Type I, 50 mm/min	6	%	ASTM D638
Tensile Strain, brk, Type I, 50 mm/min	98	%	ASTM D638
Tensile Modulus, 50 mm/min	2020	MPa	ASTM D638
Flexural Stress, yld, 1.3 mm/min, 50 mm span	92	MPa	ASTM D790
Flexural Modulus, 1.3 mm/min, 50 mm span	2230	MPa	ASTM D790
Hardness, Rockwell L	89	-	ASTM D785
Hardness, Rockwell R	121	-	ASTM D785
Tensile Stress, yield, 50 mm/min	57	MPa	ISO 527
Tensile Stress, break, 50 mm/min	60	MPa	ISO 527
Tensile Strain, yield, 50 mm/min	6	%	ISO 527
Tensile Strain, break, 50 mm/min	120	%	ISO 527
Tensile Modulus, 1 mm/min	2150	MPa	ISO 527
Flexural Stress, yield, 2 mm/min	85	MPa	ISO 178
Flexural Modulus, 2 mm/min	2250	MPa	ISO 178
IMPACT (1)			
Izod Impact, notched, 23°C	865	J/m	ASTM D256
Izod Impact, notched, -30°C	775	J/m	ASTM D256
Instrumented Dart Impact Total Energy, 23°C	70	J	ASTM D3763
Izod Impact, unnotched 80*10*3 +23°C	NB	kJ/m²	ISO 180/1U
Izod Impact, unnotched 80*10*3 -30°C	NB	kJ/m²	ISO 180/1U
Izod Impact, notched 80*10*3 +23°C	70	kJ/m²	ISO 180/1A
Izod Impact, notched 80*10*3 -30°C	60	kJ/m²	ISO 180/1A
Charpy 23°C, V-notch Edgew 80*10*3 sp=62mm	70	kJ/m²	ISO 179/1eA
Charpy -30°C, V-notch Edgew 80*10*3 sp=62mm	65	kJ/m²	ISO 179/1eA
Charpy 23°C, Unnotch Edgew 80*10*3 sp=62mm	NB	kJ/m²	ISO 179/1eU
Charpy -30°C, Unnotch Edgew 80*10*3 sp=62mm	NB	kJ/m²	ISO 179/1eU
THERMAL (1)			
Vicat Softening Temp, Rate B/50	145	°C	ASTM D1525
HDT, 0.45 MPa, 3.2 mm, unannealed	140	°C	ASTM D648
HDT, 1.82 MPa, 3.2mm, unannealed	124	°C	ASTM D648
CTE, -40°C to 40°C, flow	6.97E-05	1/°C	ASTM E831
CTE, -40°C to 40°C, xflow	7.47E-05	1/°C	ASTM E831
		CLIENAIC	TDV/ TILAT NAATTEDC*

© 2024 Copyright by SABIC. All rights reserved

CHEMISTRY THAT MATTERS"

PROPERTIES	TYPICAL VALUES	UNITS	TEST METHODS
CTE, 23°C to 80°C, flow	7.2E-05	1/°C	ISO 11359-2
CTE, 23°C to 80°C, xflow	7.2E-05	1/°C	ISO 11359-2
Ball Pressure Test, 125°C +/- 2°C	PASSES	-	IEC 60695-10-2
Vicat Softening Temp, Rate B/50	145	°C	ISO 306
Vicat Softening Temp, Rate B/120	146	°C	ISO 306
HDT/Be, 0.45MPa Edgew 120*10*4 sp=100mm	140	°C	ISO 75/Be
HDT/Ae, 1.8 MPa Edgew 120*10*4 sp=100mm	128	°C	ISO 75/Ae
Relative Temp Index, Elec (2)	130	°C	UL 746B
Relative Temp Index, Mech w/impact (2)	120	°C	UL 746B
Relative Temp Index, Mech w/o impact (2)	130	°C	UL 746B
PHYSICAL (1)			
Specific Gravity	1.18	-	ASTM D792
Mold Shrinkage on Tensile Bar, flow (3)	0.4 - 0.8	%	SABIC method
Mold Shrinkage, flow, 3.2 mm ⁽³⁾	0.4 - 0.8	%	SABIC method
Mold Shrinkage, xflow, 3.2 mm ⁽³⁾	0.4 - 0.8	%	SABIC method
Melt Flow Rate, 300°C/1.2 kgf	10	g/10 min	ASTM D1238
Density	1.19	g/cm³	ISO 1183
Water Absorption, (23°C/saturated)	0.35	%	ISO 62-1
Moisture Absorption (23°C / 50% RH)	0.15	%	ISO 62
Melt Volume Rate, MVR at 300°C/1.2 kg	9	cm³/10 min	ISO 1133
ELECTRICAL (1)			
Volume Resistivity	>1.E+15	Ω.cm	ASTM D257
Surface Resistivity	>1.E+15	Ω	ASTM D257
Dielectric Strength, in oil, 0.8 mm	16.3	kV/mm	ASTM D149
Relative Permittivity, 100 Hz	2.68	-	ASTM D150
Relative Permittivity, 1 MHz	2.64	-	ASTM D150
Dissipation Factor, 100 Hz	0.0012	-	ASTM D150
Dissipation Factor, 1 MHz	0.0093	-	ASTM D150
Hot-Wire Ignition (HWI), PLC 0	≥0.7	mm	UL 746A
High Amp Arc Ignition (HAI), PLC 1	≥0.7	mm	UL 746A
FLAME CHARACTERISTICS (2)			
UL Yellow Card Link	E45329-100079883	-	-
UL Yellow Card Link 2	<u>E45329-462651</u>	-	
UL Recognized, 94HB Flame Class Rating	≥0.7	mm	UL 94
Glow Wire Flammability Index 960°C, passes at (4)	1	mm	IEC 60695-2-12
UV-light, water exposure/immersion	F1		UL 746C
Oxygen Index (LOI)	37	%	ISO 4589
INJECTION MOLDING (5)			
Drying Temperature	120	°C	
Drying Time	3 – 4	Hrs	
Drying Time (Cumulative)	48	Hrs	
Maximum Moisture Content	0.02	%	
Melt Temperature	295 – 315	°C	
Nozzle Temperature	290 – 310	°C	
Front - Zone 3 Temperature	295 – 315	°C	
r			

PROPERTIES	TYPICAL VALUES	UNITS	TEST METHODS
Middle - Zone 2 Temperature	280 – 305	°C	
Rear - Zone 1 Temperature	270 – 295	°C	
Mold Temperature	70 – 95	°C	
Back Pressure	0.3 – 0.7	MPa	
Screw Speed	40 – 70	rpm	
Shot to Cylinder Size	40 – 60	%	
Vent Depth	0.025 - 0.076	mm	

- (1) The information stated on Technical Datasheets should be used as indicative only for material selection purposes and not be utilized as specification or used for part or tool design.
- (2) UL Ratings shown on the technical datasheet might not cover the full range of thicknesses and colors. For details, please see the UL Yellow Card.
- (3) Measurements made from laboratory test coupon. Actual shrinkage may vary outside of range due to differences in processing conditions, equipment, part geometry and tool design. It is recommended that mold shrinkage studies be performed with surrogate or legacy tooling prior to cutting tools for new molded article. The information stated on Technical Datasheets should be used as indicative only for material selection purposes and not be utilized as specification or used for part or tool design.
- (4) Value shown here is based on internal measurement.
- (5) Injection Molding parameters are only mentioned as general guidelines. These may not apply or may need adjustment in specific situations such as low shot sizes, large part molding, thin wall molding and gas-assist molding.

MORE INFORMATION

For curve data and CAE cards, please visit and register at https://materialfinder.sabic-specialties.com

DISCLAIMER

Any sale by SABIC, its subsidiaries and affiliates (each a "seller"), is made exclusively under seller's standard conditions of sale (available upon request) unless agreed otherwise in writing and signed on behalf of the seller. While the information contained herein is given in good faith, SELLER MAKES NO WARRANTY, EXPRESS OR IMPLIED, INCLUDING MERCHANTABILITY AND NONINFRINGEMENT OF INTELLECTUAL PROPERTY, NOR ASSUMES ANY LIABILITY, DIRECT OR INDIRECT, WITH RESPECT TO THE PERFORMANCE, SUITABILITY OR FITNESS FOR INTENDED USE OR PURPOSE OF THESE PRODUCTS IN ANY APPLICATION. Each customer must determine the suitability of seller materials for the customer's particular use through appropriate testing and analysis. No statement by seller concerning a possible use of any product, service or design is intended, or should be construed, to grant any license under any patent or other intellectual property right.