

# NORYL GTXTM RESIN GTX4610

## REGION EUROPE

### **DESCRIPTION**

NORYL GTX4610 resin is a 10% glass fiber reinforced alloy of Polyphenylene Ether (PPE) + Polyamide (PA). This high performance injection moldable grade has a UL 5VA flame rating, non-brominated / non-chlorinated FR package, UL746C Outdoor Suitability rating of F1, excellent chemical resistance, high heat resistance, and flow. NORYL GTX4610 resin is an excellent candidate for a wide variety of electrical applications including connectors, sockets, sensors, terminal blocks, and insulator components.

| GENERAL INFORMATION   |                                                                                                                                                                                                                                                                                        |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Features              | Flame Retardant, Chemical Resistance, Good Processability, Hydrolytic Stability, Low Warpage, Low Moisture Absorption, Low Specific Gravity, Non halogenated flame retardant, Dimensional stability, High stiffness/Strength, High temperature resistance, No PFAS intentionally added |
| Fillers               | Glass Fiber                                                                                                                                                                                                                                                                            |
| Polymer Types         | Polyphenylene Ether + PA (PPE+Nylon)                                                                                                                                                                                                                                                   |
| Processing Techniques | Injection Molding                                                                                                                                                                                                                                                                      |
| INDUCTOR              | CUD INIDUISTRY                                                                                                                                                                                                                                                                         |

| INDUSTRY                   | SUB INDUSTRY              |
|----------------------------|---------------------------|
| Automotive                 | Automotive Under the Hood |
| Building and Construction  | Building Component        |
| Electrical and Electronics | Electronic Components     |
| Industrial                 | Electrical                |

#### **TYPICAL PROPERTY VALUES**

Revision 20241015

| PROPERTIES                                    | TYPICAL VALUES | UNITS | TEST METHODS          |
|-----------------------------------------------|----------------|-------|-----------------------|
| MECHANICAL (1)                                |                |       |                       |
| Tensile Stress, yld, Type I, 5 mm/min         | 88             | MPa   | ASTM D638             |
| Tensile Stress, brk, Type I, 5 mm/min         | 88             | MPa   | ASTM D638             |
| Tensile Strain, yld, Type I, 5 mm/min         | 3              | %     | ASTM D638             |
| Tensile Strain, brk, Type I, 5 mm/min         | 3              | %     | ASTM D638             |
| Tensile Modulus, 5 mm/min                     | 5000           | MPa   | ASTM D638             |
| Flexural Stress, yld, 1.3 mm/min, 50 mm span  | 145            | MPa   | ASTM D790             |
| Flexural Modulus, 1.3 mm/min, 50 mm span      | 4600           | MPa   | ASTM D790             |
| Tensile Stress, yield, 5 mm/min               | 88             | MPa   | ISO 527               |
| Tensile Stress, break, 5 mm/min               | 88             | MPa   | ISO 527               |
| Tensile Strain, yield, 5 mm/min               | 3              | %     | ISO 527               |
| Tensile Strain, break, 5 mm/min               | 3              | %     | ISO 527               |
| Tensile Modulus, 1 mm/min                     | 5000           | MPa   | ISO 527               |
| Flexural Stress, yield, 2 mm/min              | 145            | MPa   | ISO 178               |
| Flexural Modulus, 2 mm/min                    | 4600           | MPa   | ISO 178               |
| IMPACT (1)                                    |                |       |                       |
| Izod Impact, notched, 23°C                    | 80             | J/m   | ASTM D256             |
| Izod Impact, notched, -30°C                   | 65             | J/m   | ASTM D256             |
| Instrumented Dart Impact Total Energy, 23°C   | 12             | J     | ASTM D3763            |
| @ 2024 Copyright by CARIC All rights recorded |                | CHI   | ENVICTOR THAT MATTERS |

© 2024 Copyright by SABIC. All rights reserved

CHEMISTRY THAT MATTERS



| PROPERTIES                                 | TYPICAL VALUES        | UNITS      | TEST METHODS |
|--------------------------------------------|-----------------------|------------|--------------|
| Izod Impact, notched 80*10*4 +23°C         | 5                     | kJ/m²      | ISO 180/1A   |
| Izod Impact, notched 80*10*4 -30°C         | 5                     | kJ/m²      | ISO 180/1A   |
| Charpy 23°C, V-notch Edgew 80*10*4 sp=62mm | 5                     | kJ/m²      | ISO 179/1eA  |
| THERMAL (1)                                |                       |            |              |
| Vicat Softening Temp, Rate B/50            | 218                   | °C         | ASTM D1525   |
| HDT, 0.45 MPa, 3.2 mm, unannealed          | 220                   | °C         | ASTM D648    |
| CTE, -40°C to 40°C, flow                   | 4.1E-05               | 1/°C       | ASTM E831    |
| CTE, -40°C to 40°C, xflow                  | 7.4E-05               | 1/°C       | ASTM E831    |
| CTE, -40°C to 40°C, flow                   | 4.1E-05               | 1/°C       | ISO 11359-2  |
| CTE, -40°C to 40°C, xflow                  | 7.4E-05               | 1/°C       | ISO 11359-2  |
| Vicat Softening Temp, Rate B/50            | 218                   | °C         | ISO 306      |
| Vicat Softening Temp, Rate B/120           | 220                   | °C         | ISO 306      |
| HDT/Bf, 0.45 MPa Flatw 80*10*4 sp=64mm     | 224                   | °C         | ISO 75/Bf    |
| PHYSICAL (1)                               |                       |            |              |
| Specific Gravity                           | 1.21                  | -          | ASTM D792    |
| Mold Shrinkage, flow, 3.2 mm (2)           | 0.88 - 0.94           | %          | SABIC method |
| Mold Shrinkage, xflow, 3.2 mm (2)          | 0.95 – 1.01           | %          | SABIC method |
| Melt Flow Rate, 300°C/5.0 kgf              | 18                    | g/10 min   | ASTM D1238   |
| Density                                    | 1.21                  | g/cm³      | ISO 1183     |
| Water Absorption, (23°C/saturated)         | 3.8                   | %          | ISO 62-1     |
| Moisture Absorption (23°C / 50% RH)        | 0.5                   | %          | ISO 62       |
| Melt Volume Rate, MVR at 300°C/5.0 kg      | 15                    | cm³/10 min | ISO 1133     |
| ELECTRICAL (1)                             |                       |            |              |
| Volume Resistivity                         | 1.E+16                | Ω.cm       | ASTM D257    |
| Dielectric Strength, in air, 1.6 mm        | 23.2                  | kV/mm      | ASTM D149    |
| Dielectric Strength, in oil, 1.6 mm        | 24.4                  | kV/mm      | ASTM D149    |
| Comparative Tracking Index (3)             | 425                   | V          | IEC 60112    |
| INJECTION MOLDING (4)                      |                       |            |              |
| Drying Temperature                         | 95 – 105              | °C         |              |
| Drying Time                                | 3 – 4                 | Hrs        |              |
| Drying Time (Cumulative)                   | 8                     | Hrs        |              |
| Maximum Moisture Content                   | 0.07                  | %          |              |
| Minimum Moisture Content                   | 0.02                  | %          |              |
| Melt Temperature                           | 280 – 305             | °C         |              |
| Nozzle Temperature                         | 280 – 305             | °C         |              |
| Front - Zone 3 Temperature                 | 275 – 305             | °C         |              |
| Middle - Zone 2 Temperature                | 270 – 305             | °C         |              |
| Rear - Zone 1 Temperature                  | 265 – 305             | °C         |              |
| Mold Temperature                           | 75 – 120              | °C         |              |
|                                            |                       | MPa        |              |
| Back Pressure                              | 0.3 – 1.4             | IVII a     |              |
| Back Pressure Screw Speed                  | 0.3 – 1.4<br>20 – 100 | rpm        |              |
|                                            |                       |            |              |



- (1) The information stated on Technical Datasheets should be used as indicative only for material selection purposes and not be utilized as specification or used for part or tool design.
- (2) Measurements made from laboratory test coupon. Actual shrinkage may vary outside of range due to differences in processing conditions, equipment, part geometry and tool design. It is recommended that mold shrinkage studies be performed with surrogate or legacy tooling prior to cutting tools for new molded article.
- (3) Value shown here is based on internal measurement.
- (4) Injection Molding parameters are only mentioned as general guidelines. These may not apply or may need adjustment in specific situations such as low shot sizes, large part molding, thin wall molding and gas-assist molding.

#### **ADDITIONAL PRODUCT NOTES**

No PFAS intentionally added: The grade listed in this document does not contain PFAS intentionally added during Seller's manufacturing process and is not expected to contain unintentional PFAS impurities. Each user is responsible for evaluating the presence of unintentional PFAS impurities.

#### **DISCLAIMER**

Any sale by SABIC, its subsidiaries and affiliates (each a "seller"), is made exclusively under seller's standard conditions of sale (available upon request) unless agreed otherwise in writing and signed on behalf of the seller. While the information contained herein is given in good faith, SELLER MAKES NO WARRANTY, EXPRESS OR IMPLIED, INCLUDING MERCHANTABILITY AND NONINFRINGEMENT OF INTELLECTUAL PROPERTY, NOR ASSUMES ANY LIABILITY, DIRECT OR INDIRECT, WITH RESPECT TO THE PERFORMANCE, SUITABILITY OR FITNESS FOR INTENDED USE OR PURPOSE OF THESE PRODUCTS IN ANY APPLICATION. Each customer must determine the suitability of seller materials for the customer's particular use through appropriate testing and analysis. No statement by seller concerning a possible use of any product, service or design is intended, or should be construed, to grant any license under any patent or other intellectual property right.