

NORYLTM RESIN SE1GFN3

REGION AMERICAS

DESCRIPTION

NORYL SE1GFN3 resin is a 30% glass fiber reinforced blend of polyphenylene ether (PPE) + polystyrene (PS). This injection moldable grade contains non-brominated, non-chlorinated flame retardant and carries a UL94 flame rating of V1 at 1.5mm and RTI of 110C. NORYL SE1GFN3 exhibits high heat resistance, good dielectric strength, dimensional stability, hydrolytic stability, and very low moisture absorption. This material is an excellent candidate for a variety of applications such as solar frames, unattended power supply (UPS) inverter/charger, indoor and outdoor electrical enclosures / housings / connectors, and wall plates / sockets / switches.

GENERAL INFORMATION	
Features	Flame Retardant, Hydrolytic Stability, Low Warpage, Amorphous, Low Shrinkage, Low Moisture Absorption, Low Specific Gravity, Non CI/Br flame retardant, Non halogenated flame retardant, Dimensional stability, High stiffness/Strength, No PFAS intentionally added
Fillers	Glass Fiber
Polymer Types	Polyphenylene Ether + PS (PPE+PS)
Processing Techniques	Injection Molding
INDUSTRY	SUB INDUSTRY
Automotive	Automotive EV Batteries
Electrical and Electronics	Energy Management, Mobile Phone - Computer - Tablets

TYPICAL PROPERTY VALUES

Industrial

Revision 20241016

PROPERTIES	TYPICAL VALUES	UNITS	TEST METHODS
MECHANICAL (1)			
Tensile Stress, brk, Type I, 5 mm/min	120	MPa	ASTM D638
Tensile Strain, brk, Type I, 5 mm/min	5	%	ASTM D638
Flexural Stress, yld, 2.6 mm/min, 100 mm span	172	MPa	ASTM D790
Flexural Modulus, 2.6 mm/min, 100 mm span	7790	MPa	ASTM D790
Hardness, Rockwell L	108	-	ASTM D785
IMPACT (1)			
Izod Impact, notched, 23°C	117	J/m	ASTM D256
Izod Impact, notched, -40°C	96	J/m	ASTM D256
THERMAL (1)			
HDT, 0.45 MPa, 6.4 mm, unannealed	140	°C	ASTM D648
HDT, 1.82 MPa, 6.4 mm, unannealed	135	°C	ASTM D648
CTE, -40°C to 95°C, flow	2.52E-05	1/°C	ASTM E831
Relative Temp Index, Elec ⁽²⁾	110	°C	UL 746B
Relative Temp Index, Mech w/impact (2)	105	°C	UL 746B
Relative Temp Index, Mech w/o impact (2)	110	°C	UL 746B
PHYSICAL (1)			
Specific Gravity	1.31	-	ASTM D792

PROPERTIES	TYPICAL VALUES	UNITS	TEST METHODS
Water Absorption, (23°C/24hrs)	0.06	%	ASTM D570
Mold Shrinkage, flow, 3.2 mm (3)	0.1 – 0.4	%	SABIC method
ELECTRICAL (1)			
Dielectric Strength, in oil, 3.2 mm	20.8	kV/mm	ASTM D149
Relative Permittivity, 50/60 Hz	3.15	-	ASTM D150
Dissipation Factor, 50/60 Hz	0.002	-	ASTM D150
High Voltage Arc Track Rate {PLC}	4	PLC Code	UL 746A
Comparative Tracking Index (UL) {PLC}	3	PLC Code	UL 746A
High Amp Arc Ignition (HAI), PLC 2	≥1.47	mm	UL 746A
Hot-Wire Ignition (HWI), PLC 0	≥1.47	mm	UL 746A
Arc Resistance, Tungsten {PLC}	6	PLC Code	ASTM D495
FLAME CHARACTERISTICS (2)			
UL Yellow Card Link	E121562-221216	-	
UL Recognized, 94V-0 Flame Class Rating	≥6.1	mm	UL 94
UL Recognized, 94V-1 Flame Class Rating	≥1.47	mm	UL 94
Oxygen Index (LOI)	35.5	%	ASTM D2863
INJECTION MOLDING (4)			
Drying Temperature	110 – 120	°C	
Drying Time	3 – 4	Hrs	
Drying Time (Cumulative)	8	Hrs	
Maximum Moisture Content	0.02	%	
Melt Temperature	300 – 325	°C	
Nozzle Temperature	300 – 325	°C	
Front - Zone 3 Temperature	290 – 325	°C	
Middle - Zone 2 Temperature	275 – 320	°C	
Rear - Zone 1 Temperature	265 – 315	°C	
Mold Temperature	80 – 110	°C	
Back Pressure	0.3 – 0.7	MPa	
Screw Speed	20 – 100	rpm	
Shot to Cylinder Size	30 – 70	%	

⁽¹⁾ The information stated on Technical Datasheets should be used as indicative only for material selection purposes and not be utilized as specification or used for part or tool design.

DISCLAIMER

Any sale by SABIC, its subsidiaries and affiliates (each a "seller"), is made exclusively under seller's standard conditions of sale (available upon request) unless agreed otherwise in writing and signed on behalf of the seller. While the information contained herein is given in good faith, SELLER MAKES NO WARRANTY, EXPRESS OR IMPLIED, INCLUDING MERCHANTABILITY AND NONINFRINGEMENT OF INTELLECTUAL PROPERTY, NOR ASSUMES ANY LIABILITY, DIRECT OR INDIRECT, WITH RESPECT TO THE PERFORMANCE, SUITABILITY OR FITNESS FOR INTENDED USE OR PURPOSE OF THESE PRODUCTS IN ANY APPLICATION. Each customer must determine the suitability of seller materials for the customer's particular use through appropriate testing and analysis. No statement by seller concerning a possible use of any product, service or design is intended, or should be construed, to grant any license under any patent or other intellectual property right.

⁽²⁾ UL Ratings shown on the technical datasheet might not cover the full range of thicknesses, colors and regions. For details, please see the UL Yellow Card.

⁽³⁾ Measurements made from laboratory test coupon. Actual shrinkage may vary outside of range due to differences in processing conditions, equipment, part geometry and tool design. It is recommended that mold shrinkage studies be performed with surrogate or legacy tooling prior to cutting tools for new molded article.

⁽⁴⁾ Injection Molding parameters are only mentioned as general guidelines. These may not apply or may need adjustment in specific situations such as low shot sizes, large part molding, thin wall molding and gas-assist molding.