

LEXANTM COPOLYMER EXL4419

REGION EUROPE

DESCRIPTION

LEXAN EXL4419 polycarbonate (PC) siloxane copolymer resin is a 9% Glass Fiber (GF) reinforced opaque injection molding (IM) grade. This medium flow resin offers much higher ductility, improved release characteristics and excellent processability with opportunities for shorter IM cycle times when compared to GF reinforced standard PC resins. LEXAN EXL4419 resin is available in opaque colors only and is an excellent candidate for a broad range of applications that require a combination of stiffness and ductility.

TYPICAL PROPERTY VALUES

Revision 20241024

PROPERTIES	TYPICAL VALUES	UNITS	TEST METHODS
MECHANICAL (1)			
Tensile Stress, yld, Type I, 5 mm/min	53	MPa	ASTM D638
Tensile Stress, brk, Type I, 5 mm/min	44	MPa	ASTM D638
Tensile Strain, yld, Type I, 5 mm/min	4.5	%	ASTM D638
Tensile Strain, brk, Type I, 5 mm/min	20	%	ASTM D638
Tensile Modulus, 5 mm/min	3300	MPa	ASTM D638
Flexural Stress, yld, 1.3 mm/min, 50 mm span	95	MPa	ASTM D790
Flexural Modulus, 1.3 mm/min, 50 mm span	3200	MPa	ASTM D790
Tensile Stress, yield, 5 mm/min	55	MPa	ISO 527
Tensile Stress, break, 5 mm/min	43	MPa	ISO 527
Tensile Strain, yield, 5 mm/min	4.5	%	ISO 527
Tensile Strain, break, 5 mm/min	12.5	%	ISO 527
Tensile Modulus, 1 mm/min	3300	MPa	ISO 527
Flexural Stress, yield, 2 mm/min	90	MPa	ISO 178
Flexural Modulus, 2 mm/min	3300	MPa	ISO 178
IMPACT (1)			
Izod Impact, notched, 23°C	280	J/m	ASTM D256
Izod Impact, notched, -30°C	110	J/m	ASTM D256
Instrumented Dart Impact Total Energy, 23°C	40	J	ASTM D3763
Izod Impact, unnotched 80*10*3 +23°C	NB	kJ/m²	ISO 180/1U
Izod Impact, unnotched 80*10*3 -30°C	NB	kJ/m²	ISO 180/1U
Izod Impact, notched 80*10*3 +23°C	25	kJ/m²	ISO 180/1A
Izod Impact, notched 80*10*3 -30°C	10	kJ/m²	ISO 180/1A
Charpy 23°C, V-notch Edgew 80*10*3 sp=62mm	25	kJ/m²	ISO 179/1eA
Charpy -30°C, V-notch Edgew 80*10*3 sp=62mm	15	kJ/m²	ISO 179/1eA
Charpy 23°C, Unnotch Edgew 80*10*3 sp=62mm	NB	kJ/m²	ISO 179/1eU
Charpy -30°C, Unnotch Edgew 80*10*3 sp=62mm	NB	kJ/m²	ISO 179/1eU
THERMAL (1)			
Vicat Softening Temp, Rate B/50	145	°C	ASTM D1525
HDT, 1.82 MPa, 3.2mm, unannealed	135	°C	ASTM D648
CTE, -40°C to 40°C, flow	4.07E-05	1/°C	ASTM E831
CTE, -40°C to 40°C, xflow	6.94E-05	1/°C	ASTM E831
CTE, -40°C to 40°C, flow	4.07E-05	1/°C	ISO 11359-2
CTE, -40°C to 40°C, xflow	6.94E-05	1/°C	ISO 11359-2

PROPERTIES	TYPICAL VALUES	UNITS	TEST METHODS
Ball Pressure Test, 75°C +/- 2°C	PASS		IEC 60695-10-2
Vicat Softening Temp, Rate B/50	144	°C	ISO 306
Vicat Softening Temp, Rate B/30 Vicat Softening Temp, Rate B/120	146	°C	ISO 306
HDT/Af, 1.8 MPa Flatw 80*10*4 sp=64mm	134	°C	ISO 75 /Af
PHYSICAL (1)	134	C	130 73/11
	4.05		45714 0 70 0
Specific Gravity	1,25	-	ASTM D792
Mold Shrinkage, flow, 3.2 mm (2)	0.2 – 0.6	%	SABIC method
Melt Flow Rate, 300°C/1.2 kgf	11	g/10 min	ASTM D1238
Density	1.25	g/cm³	ISO 1183
Water Absorption, (23°C/saturated)	0.12	%	ISO 62-1
Moisture Absorption (23°C / 50% RH)	0.46	%	ISO 62
Melt Volume Rate, MVR at 300°C/1.2 kg	10	cm³/10 min	ISO 1133
ELECTRICAL (1)			
Volume Resistivity	1.78E+17	$\Omega.cm$	ASTM D257
Surface Resistivity	2.86E+17	Ω	ASTM D257
Dielectric Strength, in oil, 1.6 mm	31.5	kV/mm	ASTM D149
Relative Permittivity, 1 MHz	3.04	-	ASTM D150
Dissipation Factor, 1 MHz	0.0086	-	ASTM D150
Dielectric Constant, 1.9 GHz	2.95	-	SABIC method
Dissipation Factor, 1.9 GHz	0.0057	-	SABIC method
INJECTION MOLDING (3)			
Drying Temperature	120	°C	
Drying Time	3 – 4	Hrs	
Drying Time (Cumulative)	48	Hrs	
Maximum Moisture Content	0.02	%	
Melt Temperature	310 – 330	°C	
Nozzle Temperature	305 – 325	°C	
Front - Zone 3 Temperature	310 – 330	°C	
Middle - Zone 2 Temperature	300 – 320	°C	
Rear - Zone 1 Temperature	290 – 310	°C	
Mold Temperature	80 – 115	°C	
Back Pressure	0.3 - 0.7	MPa	
Screw Speed	40 – 70	rpm	
Shot to Cylinder Size	40 - 60	%	
Vent Depth	0.025 - 0.076	mm	

⁽¹⁾ The information stated on Technical Datasheets should be used as indicative only for material selection purposes and not be utilized as specification or used for part or tool design.

MORE INFORMATION

For curve data and CAE cards, please visit and register at https://materialfinder.sabic-specialties.com

⁽²⁾ Measurements made from laboratory test coupon. Actual shrinkage may vary outside of range due to differences in processing conditions, equipment, part geometry and tool design. It is recommended that mold shrinkage studies be performed with surrogate or legacy tooling prior to cutting tools for new molded article. The information stated on Technical Datasheets should be used as indicative only for material selection purposes and not be utilized as specification or used for part or tool design.

⁽³⁾ Injection Molding parameters are only mentioned as general guidelines. These may not apply or may need adjustment in specific situations such as low shot sizes, large part molding, thin wall molding and gas-assist molding.

DISCLAIMER

Any sale by SABIC, its subsidiaries and affiliates (each a "seller"), is made exclusively under seller's standard conditions of sale (available upon request) unless agreed otherwise in writing and signed on behalf of the seller. While the information contained herein is given in good faith, SELLER MAKES NO WARRANTY, EXPRESS OR IMPLIED, INCLUDING MERCHANTABILITY AND NONINFRINGEMENT OF INTELLECTUAL PROPERTY, NOR ASSUMES ANY LIABILITY, DIRECT OR INDIRECT, WITH RESPECT TO THE PERFORMANCE, SUITABILITY OR FITNESS FOR INTENDED USE OR PURPOSE OF THESE PRODUCTS IN ANY APPLICATION. Each customer must determine the suitability of seller materials for the customer's particular use through appropriate testing and analysis. No statement by seller concerning a possible use of any product, service or design is intended, or should be construed, to grant any license under any patent or other intellectual property right.