

NORYL GTXTM RESIN GTX914

REGION EUROPE

DESCRIPTION

NORYL GTX914 resin is a non-reinforced alloy of Polyphenylene Ether (PPE) + Polyamide (PA). This injection moldable grade exhibits an ideal combination of impact performance and dimensional stability at elevated temperatures along with excellent chemical resistance and processability. NORYL GTX914 resin may be an excellent candidate for various automotive applications such as tank flaps, exterior trim, and wheel covers.

GENERAL INFORMATION	
Features	Chemical Resistance, Hydrolytic Stability, Low Warpage, Low Shrinkage, Low Moisture Absorption, Low Specific Gravity, Dimensional stability, High stiffness/Strength, High temperature resistance, Impact resistant, No PFAS intentionally added
Fillers	Unreinforced
Polymer Types	Polyphenylene Ether + PA (PPE+Nylon)
Processing Techniques	Injection Molding

INDUSTRY	SUB INDUSTRY
Automotive	Heavy Truck, Automotive Exteriors, Recreational/Specialty Vehicles

TYPICAL PROPERTY VALUES

Revision 20241015

PROPERTIES	TYPICAL VALUES	UNITS	TEST METHODS
MECHANICAL (1)			
Tensile Stress, yld, Type I, 50 mm/min	55	MPa	ASTM D638
Tensile Stress, brk, Type I, 50 mm/min	55	MPa	ASTM D638
Tensile Strain, yld, Type I, 50 mm/min	15	%	ASTM D638
Tensile Strain, brk, Type I, 50 mm/min	100	%	ASTM D638
Tensile Modulus, 50 mm/min	1950	MPa	ASTM D638
Flexural Stress, yld, 1.3 mm/min, 50 mm span	80	MPa	ASTM D790
Flexural Modulus, 1.3 mm/min, 50 mm span	1900	MPa	ASTM D790
Taber Abrasion, CS-17, 1 kg	15	mg/1000cy	SABIC method
Tensile Stress, yield, 50 mm/min	55	MPa	ISO 527
Tensile Stress, break, 50 mm/min	55	MPa	ISO 527
Tensile Strain, yield, 50 mm/min	7.5	%	ISO 527
Tensile Strain, break, 50 mm/min	60	%	ISO 527
Tensile Modulus, 1 mm/min	2100	MPa	ISO 527
Flexural Stress, yield, 2 mm/min	80	MPa	ISO 178
Flexural Modulus, 2 mm/min	2000	MPa	ISO 178
Ball Indentation Hardness, H358/30	90	MPa	ISO 2039-1
IMPACT (1)			
Izod Impact, notched, 23°C	280	J/m	ASTM D256
Izod Impact, notched, -30°C	120	J/m	ASTM D256
Instrumented Dart Impact Total Energy, 23°C	60	J	ASTM D3763
Izod Impact, notched 80*10*4 +23°C	30	kJ/m²	ISO 180/1A

PROPERTIES	TVDICAL VALUES	UNITS	TEST METHODS
	TYPICAL VALUES		TEST METHODS
Izod Impact, notched 80*10*4 -30°C	15	kJ/m²	ISO 180/1A
Charpy 23°C, V-notch Edgew 80*10*4 sp=62mm	30	kJ/m²	ISO 179/1eA
Charpy Impact, notched, 23°C	30	kJ/m²	ISO 179/2C
Charpy -30°C, V-notch Edgew 80*10*4 sp=62mm	15	kJ/m²	ISO 179/1eA
THERMAL (1)			
Vicat Softening Temp, Rate B/50	195	°C	ASTM D1525
HDT, 0.45 MPa, 3.2 mm, unannealed	180	°C	ASTM D648
CTE, -40°C to 40°C, flow	9.E-05	1/°C	ASTM E831
CTE, -40°C to 40°C, xflow	9.5E-05	1/°C	ASTM E831
Thermal Conductivity	0.23	W/m-°C	ISO 8302
CTE, 23°C to 60°C, flow	9.E-05	1/°C	ISO 11359-2
CTE, 23°C to 60°C, xflow	9.E-05	1/°C	ISO 11359-2
Ball Pressure Test, 125°C +/- 2°C	PASSES	-	IEC 60695-10-2
Vicat Softening Temp, Rate A/50	245	°C	ISO 306
Vicat Softening Temp, Rate B/50	190	°C	ISO 306
Vicat Softening Temp, Rate B/120	195	°C	ISO 306
HDT/Be, 0.45MPa Edgew 120*10*4 sp=100mm	180	°C	ISO 75/Be
PHYSICAL (1)			
Specific Gravity	1.1	-	ASTM D792
Mold Shrinkage on Tensile Bar, flow (2)	1.5 – 1.9	%	SABIC method
Mold Shrinkage, flow, 3.2 mm ⁽²⁾	1.3 – 1.6	%	SABIC method
Mold Shrinkage, xflow, 3.2 mm (2)	1.1 – 1.4	%	SABIC method
Melt Flow Rate, 280°C/5.0 kgf	12	g/10 min	ASTM D1238
Density	1.09	g/cm³	ISO 1183
Water Absorption, (23°C/saturated)	3.5	%	ISO 62-1
Moisture Absorption (23°C / 50% RH)	1.2	%	ISO 62
Melt Volume Rate, MVR at 280°C/5.0 kg	11	cm³/10 min	ISO 1133
ELECTRICAL (1)			
Dielectric Strength, in oil, 3.2 mm	20	kV/mm	IEC 60243-1
Relative Permittivity, 1 MHz	2.7	-	IEC 60250
Dissipation Factor, 50/60 Hz	0.072	-	IEC 60250
Dissipation Factor, 1 MHz	0.024	-	IEC 60250
Comparative Tracking Index	600	V	IEC 60112
Relative Permittivity, 50/60 Hz	3.5	-	IEC 60250
FLAME CHARACTERISTICS (1)			
UL Compliant, 94HB Flame Class Rating	1.6	mm	UL 94 by SABIC-IP
INJECTION MOLDING (3)			
Drying Temperature	100 – 120	°C	
Drying Time	2 – 3	Hrs	
Maximum Moisture Content	0.07	%	
Melt Temperature	280 – 310	°C	
Nozzle Temperature	270 – 300	°C	
Front - Zone 3 Temperature	280 – 300	°C	
Middle - Zone 2 Temperature	270 – 290	°C	
Rear - Zone 1 Temperature	260 – 280	°C	

PROPERTIES	TYPICAL VALUES	UNITS	TEST METHODS
Hopper Temperature	60 – 80	°C	
Mold Temperature	80 – 120	°C	

- (1) The information stated on Technical Datasheets should be used as indicative only for material selection purposes and not be utilized as specification or used for part or tool design.
- (2) Measurements made from laboratory test coupon. Actual shrinkage may vary outside of range due to differences in processing conditions, equipment, part geometry and tool design. It is recommended that mold shrinkage studies be performed with surrogate or legacy tooling prior to cutting tools for new molded article.
- (3) Injection Molding parameters are only mentioned as general guidelines. These may not apply or may need adjustment in specific situations such as low shot sizes, large part molding, thin wall molding and gas-assist molding.

ADDITIONAL PRODUCT NOTES

No PFAS intentionally added: The grade listed in this document does not contain PFAS intentionally added during Seller's manufacturing process and is not expected to contain unintentional PFAS impurities. Each user is responsible for evaluating the presence of unintentional PFAS impurities.

DISCLAIMER

Any sale by SABIC, its subsidiaries and affiliates (each a "seller"), is made exclusively under seller's standard conditions of sale (available upon request) unless agreed otherwise in writing and signed on behalf of the seller. While the information contained herein is given in good faith, SELLER MAKES NO WARRANTY, EXPRESS OR IMPLIED, INCLUDING MERCHANTABILITY AND NONINFRINGEMENT OF INTELLECTUAL PROPERTY, NOR ASSUMES ANY LIABILITY, DIRECT OR INDIRECT, WITH RESPECT TO THE PERFORMANCE, SUITABILITY OR FITNESS FOR INTENDED USE OR PURPOSE OF THESE PRODUCTS IN ANY APPLICATION. Each customer must determine the suitability of seller materials for the customer's particular use through appropriate testing and analysis. No statement by seller concerning a possible use of any product, service or design is intended, or should be construed, to grant any license under any patent or other intellectual property right.