

LNPTM THERMOCOMPTM COMPOUND PX18002

DESCRIPTION

LNP THERMOCOMP PX18002 compound is based on glass-filled Nylon 6 resin. Added features of this grade include: Dimensional Stability, Exceptional Processing, Good Aesthetics.

GENERAL INFORMATION	
Features	High Flow, Aesthetics/Visual effects, Dimensional stability, High stiffness/Strength, No PFAS intentionally added
Fillers	Glass Fiber, Glass Bead
Polymer Types	Polyamide 6 (Nylon 6)
Processing Techniques	Injection Molding

INDUSTRY	SUB INDUSTRY
Building and Construction	Building Component
Consumer	Sport/Leisure, Personal Accessory, Home Appliances, Commercial Appliance
Electrical and Electronics	Mobile Phone - Computer - Tablets
Industrial	Electrical

TYPICAL PROPERTY VALUES

PROPERTIES TYPICAL VALUES UNITS **TEST METHODS** MECHANICAL⁽¹⁾ Tensile Stress, break, 5 mm/min 225 MPa ISO 527 ISO 527 Tensile Strain, break, 5 mm/min 3 % Tensile Modulus, 1 mm/min 17600 MPa ISO 527 Flexural Strength, 2 mm/min 350 MPa ISO 178 Flexural Modulus, 2 mm/min 15000 MPa ISO 178 Tensile Stress, yld, Type I, 5 mm/min 199 MPa ASTM D638 Tensile Strain, brk, Type I, 5 mm/min 3 % ASTM D638 Tensile Modulus, 5 mm/min 17600 ASTM D638 MPa Flexural Strength, 1.3 mm/min, 50 mm span ASTM D790 290 MPa Flexural Modulus, 1.3 mm/min, 50 mm span 12600 MPa ASTM D790 IMPACT (1) Izod Impact, unnotched 80*10*3 +23°C 90 kJ/m² ISO 180/1U Izod Impact, notched 80*10*4 +23°C 19 kJ/m² ISO 180/1A Charpy 23°C, Unnotch Edgew 80*10*4 sp=62mm 95 kJ/m² ISO 179/1eU Charpy 23°C, V-notch Edgew 80*10*4 sp=62mm 18 kJ/m² ISO 179/1eA Izod Impact, unnotched, 23°C 1270 ASTM D4812 J/m Izod Impact, notched, 23°C 141 J/m ASTM D256 THERMAL (1) °C HDT/Af, 1.8 MPa Flatw 80*10*4 sp=64mm 214 ISO 75/Af °C HDT/Bf, 0.45 MPa Flatw 80*10*4 sp=64mm 221 ISO 75/Bf

© 2024 Copyright by SABIC. All rights reserved

CHEMISTRY THAT MATTERS

Revision 20231109

PROPERTIES	TYPICAL VALUES	UNITS	TEST METHODS
HDT, 1.82 MPa, 3.2mm, unannealed	212	°C	ASTM D648
HDT, 0.45 MPa, 3.2 mm, unannealed	220	°C	ASTM D648
Vicat Softening Temp, Rate B/120	210	°C	ISO 306
Vicat Softening Temp, Rate B/50	212	°C	ISO 306
CTE, 23°C to 60°C, flow	1.7E-05	1/°C	ISO 11359-2
CTE, 23°C to 60°C, xflow	8.9E-05	1/°C	ISO 11359-2
PHYSICAL ⁽¹⁾			
Density	1.67	g/cm ³	ISO 1183
Mold Shrinkage, flow ⁽²⁾	0.28	%	SABIC method
Mold Shrinkage, xflow ⁽²⁾	0.5	%	SABIC method
Melt Volume Rate, MVR at 235°C/10.0 kg	11	cm³/10 min	ISO 1133
Moisture Absorption, (23°C/50% RH/24hrs)	0.097	%	ISO 62-4
Moisture Absorption, (23°C/50% RH/Equilibrium)	0.29	%	ISO 62-4
INJECTION MOLDING ⁽³⁾			
Drying Temperature	80	°C	
Drying Time	4 - 6	Hrs	
Maximum Moisture Content	0.02	%	
Melt Temperature	260 – 290	°C	
Nozzle Temperature	240 - 280	°C	
Front - Zone 3 Temperature	250 – 290	°C	
Middle - Zone 2 Temperature	250 – 290	°C	
Rear - Zone 1 Temperature	230 – 260	°C	
Hopper Temperature	60 - 80	°C	
Mold Temperature	60 - 90	°C	
Back Pressure	0.5	MPa	
Screw Speed	100	rpm	

(1) The information stated on Technical Datasheets should be used as indicative only for material selection purposes and not be utilized as specification or used for part or tool design.

(2) Measurements made from laboratory test coupon. Actual shrinkage may vary outside of range due to differences in processing conditions, equipment, part geometry and tool design. It is recommended that mold shrinkage studies be performed with surrogate or legacy tooling prior to cutting tools for new molded article.

(3) Injection Molding parameters are only mentioned as general guidelines. These may not apply or may need adjustment in specific situations such as low shot sizes, large part molding, thin wall molding and gas-assist molding.

DISCLAIMER

Any sale by SABIC, its subsidiaries and affiliates (each a "seller"), is made exclusively under seller's standard conditions of sale (available upon request) unless agreed otherwise in writing and signed on behalf of the seller. While the information contained herein is given in good faith, SELLER MAKES NO WARRANTY, EXPRESS OR IMPLIED, INCLUDING MERCHANTABILITY AND NONINFRINGEMENT OF INTELLECTUAL PROPERTY, NOR ASSUMES ANY LIABILITY, DIRECT OR INDIRECT, WITH RESPECT TO THE PERFORMANCE, SUITABILITY OR FITNESS FOR INTENDED USE OR PURPOSE OF THESE PRODUCTS IN ANY APPLICATION. Each customer must determine the suitability of seller materials for the customer's particular use through appropriate testing and analysis. No statement by seller concerning a possible use of any product, service or design is intended, or should be construed, to grant any license under any patent or other intellectual property right.